Pandas DataFrame is two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).
Let’s see how can we can add a row at top in pandas DataFrame.
Observe this dataset first.
Python3
# importing pandas module import pandas as pd # making data frame df.head( 10 ) |
Code #1: Adding row at the top of given dataframe by concatenating the old dataframe with new one.
Python3
new_row = pd.DataFrame({ 'Name' : 'Geeks' , 'Team' : 'Boston' , 'Number' : 3 , 'Position' : 'PG' , 'Age' : 33 , 'Height' : '6-2' , 'Weight' : 189 , 'College' : 'MIT' , 'Salary' : 99999 }, index = [ 0 ]) # simply concatenate both dataframes df = pd.concat([new_row, df]).reset_index(drop = True ) df.head( 5 ) |
Output:
Code #2: Adding row at the top of given dataframe by concatenating the old dataframe with new one.
Python3
new_row = pd.DataFrame({ 'Name' : 'Geeks' , 'Team' : 'Boston' , 'Number' : 3 , 'Position' : 'PG' , 'Age' : 33 , 'Height' : '6-2' , 'Weight' : 189 , 'College' : 'MIT' , 'Salary' : 99999 }, index = [ 0 ]) # Concatenate new_row with df df = pd.concat([new_row, df[:]]).reset_index(drop = True ) df.head( 5 ) |
Output:
Code #3: Adding row at the top of given dataframe by concatenating the old dataframe with new one using df.ix[] method.
Python3
new_row = pd.DataFrame({ 'Name' : 'Geeks' , 'Team' : 'Boston' , 'Number' : 3 , 'Position' : 'PG' , 'Age' : 33 , 'Height' : '6-2' , 'Weight' : 189 , 'College' : 'MIT' , 'Salary' : 99999 }, index = [ 0 ]) df = pd.concat([new_row, df.ix[:]]).reset_index(drop = True ) df.head( 5 ) |
Output: