Thursday, December 26, 2024
Google search engine
HomeData Modelling & AIA Time Complexity Question

A Time Complexity Question

What is the time complexity of following function fun()? Assume that log(x) returns log value in base 2. 

C++




void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            cout << "neveropen";
}
 
// This code is contributed by SHUBHAMSINGH10.


C




void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            printf("neveropen");
}


Java




static void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            System.out.printf("neveropen");
}
 
// This code is contributed by umadevi9616


Python3




import math
def fun():
    i = 0
    j = 0
    for i in range(1, n + 1):
        for j in range(1,math.log(i) + 1):
            print("neveropen")
 
# This code is contributed by SHUBHAMSINGH10.


C#




static void fun()
{
    int i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= log(i); j++)
            Console.Write("neveropen");
}
 
// This code is contributed by umadevi9616


Javascript




const fun()
{
    let i, j;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= Math.log(i); j++)
            document.write("neveropen");
}
 
// This code is contributed by SHUBHAMSINGH10.


Time Complexity of the above function can be written as θ(log 1) + θ(log 2) + θ(log 3) + . . . . + θ(log n) which is θ(log n!)
Order of growth of ‘log n!’ and ‘n log n’ is same for large values of n, i.e., θ(log n!) = θ(n log n). So time complexity of fun() is θ(n log n).
The expression θ(log n!) = θ(n log n) can be easily derived from following Stirling’s approximation (or Stirling’s formula)

log n! = n*log n - n = O(n*log(n)) 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Sources: 
http://en.wikipedia.org/wiki/Stirling%27s_approximation

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments