Friday, December 27, 2024
Google search engine
HomeData Modelling & AIFind a String in given Array of Strings using Binary Search

Find a String in given Array of Strings using Binary Search

Given a sorted array of Strings arr and a String x, find an index of x if it is present in the array, using Binary Search

Examples:

Input: arr[] = {“contribute”, “neveropen”, “ide”, “practice”}, x = “ide”
Output:  2
Explanation: The String x is present at index 2.

Input :  arr[] = {“contribute”, “neveropen”, “ide”, “practice”}, x = “zz”
Output :  -1
Explanation: The String “zz” is not present. 

Approach to Find a String in a given Array of Strings:

The idea is to apply Binary Search on the given Array of Strings.

Illustrations:

Suppose the array of string is arr[] = {“contribute”, “neveropen”, “ide”, “practice”}, and the key string to find is x = “ide”. 

Now the above approach will be performed like this:

1st iteration: 

  • Low = 0, High = 4, Hence Mid = 2
  • Element at index 2 = “ide”, which is equal to the key string x
  • Therefore, x is found.

Below are the steps on how to Find a String in a given Array of Strings using Binary Search:

  • Find the Middle element of the Array of the String, and compare it with the String x.
  • If the key is found, return the index of the middle. 
  • Else check if the mid string is smaller or larger than the key string x. 
    • If it is smaller, reduce the search space to the lower half
    • If it is larger, reduce the search space to greater than half
  • Repeat the above steps till the key string x is found, or no more search space is left to search.

Below is the implementation of the above approach:

C++




// C++ program to implement 
// Binary Search for strings
  
#include <bits/stdc++.h>
using namespace std;
  
// Returns index of x if it is present 
// in arr[], else return -1
int binarySearch(string arr[], string x, int n)
{
    int l = 0;
    int r = n - 1;
  
    // Loop to implement Binary Search
    while (l <= r) {
  
        // Calculatiing mid
        int m = l + (r - l) / 2;
  
        // Some random value assigned
        // as 0 belongs to index
        int res = -1000;
  
        if (x == (arr[m]))
            res = 0;
  
        // Check if x is present at mid
        if (res == 0)
            return m;
  
        // If x greater, ignore left half
        if (x > (arr[m]))
            l = m + 1;
  
        // If x is smaller, ignore right half
        else
            r = m - 1;
    }
  
    return -1;
}
  
// Driver code
int main()
{
    string arr[]
        = { "contribute", "neveropen", "ide", "practice" };
    string x = "ide";
    int n = 4;
    int result = binarySearch(arr, x, n);
  
    if (result == -1)
        cout << ("Element not present");
    else
        cout << ("Element found at index ") << result;
}
  
// This code is contributed by
// Shashank_Sharma


Java




// Java program to implement Binary Search for strings
  
class GFG {
  
    // Returns index of x if it is present in arr[],
    // else return -1
    static int binarySearch(String[] arr, String x)
    {
        int l = 0, r = arr.length - 1;
  
        // Loop to implement Binary Search
        while (l <= r) {
  
            // Calculatiing mid
            int m = l + (r - l) / 2;
  
            int res = x.compareTo(arr[m]);
  
            // Check if x is present at mid
            if (res == 0)
                return m;
  
            // If x greater, ignore left half
            if (res > 0)
                l = m + 1;
  
            // If x is smaller, ignore right half
            else
                r = m - 1;
        }
  
        return -1;
    }
  
    // Driver method to test above
    public static void main(String[] args)
    {
        String[] arr
            = { "contribute", "neveropen", "ide", "practice" };
        String x = "ide";
        int result = binarySearch(arr, x);
  
        if (result == -1)
            System.out.println("Element not present");
        else
            System.out.println("Element found at "
                               + "index " + result);
    }
}


Python3




# Python3 program to implement Binary
# Search for strings
  
# Returns index of x if it is present
# in arr[], else return -1
  
  
def binarySearch(arr, x):
    l = 0
    r = len(arr)
  # Loop to implement Binary Search
    while (l <= r):
  
        # Calculatiing mid
        m = l + ((r - l) // 2)
  
        res = (x == arr[m])
  
        # Check if x is present at mid
        if (res == 0):
            return m - 1
  
        # If x greater, ignore left half
        if (res > 0):
            l = m + 1
  
        # If x is smaller, ignore right half
        else:
            r = m - 1
  
    return -1
  
  
# Driver Code
if __name__ == "__main__":
  
    arr = ["contribute", "neveropen",
           "ide", "practice"]
    x = "ide"
    result = binarySearch(arr, x)
  
    if (result == -1):
        print("Element not present")
    else:
        print("Element found at index",
              result)
  
# This code is contributed by ita_c


C#




// C# program to implement Binary Search for strings
  
using System;
  
class GFG {
  
    // Returns index of x if it is present in arr[],
    // else return -1
    static int binarySearch(String[] arr, String x)
    {
        int l = 0, r = arr.Length - 1;
  
        // Loop to implement Binary Search
        while (l <= r) {
  
            // Calculatiing mid
            int m = l + (r - l) / 2;
  
            int res = x.CompareTo(arr[m]);
  
            // Check if x is present at mid
            if (res == 0)
                return m;
  
            // If x greater, ignore left half
            if (res > 0)
                l = m + 1;
  
            // If x is smaller, ignore right half
            else
                r = m - 1;
        }
  
        return -1;
    }
  
    // Driver method to test above
    public static void Main(String[] args)
    {
        String[] arr
            = { "contribute", "neveropen", "ide", "practice" };
        String x = "ide";
        int result = binarySearch(arr, x);
  
        if (result == -1)
            Console.WriteLine("Element not present");
        else
            Console.WriteLine("Element found at "
                              + "index " + result);
    }
    // This code is contributed by Ryuga
}


PHP




<?php
// PHP program to implement Binary 
// Search for strings
  
// Returns index of x if it is present
// in arr[], else return -1
function binarySearch($arr, $x)
{
    $l = 0;
    $r = count($arr);
    // Loop to implement Binary Search
    while ($l <= $r
    {
        
        // Calculatiing mid
        $m = $l + (int)(($r - $l) / 2);
  
        $res = strcmp($x, $arr[$m]);
  
        // Check if x is present at mid
        if ($res == 0)
            return $m;
  
        // If x greater, ignore left half
        if ($res > 0)
            $l = $m + 1;
  
        // If x is smaller, ignore right half
        else
            $r = $m - 1;
    }
  
    return -1;
}
  
// Driver Code
$arr = array("contribute", "neveropen"
                "ide", "practice");
$x = "ide";
$result = binarySearch($arr, $x);
  
if ($result == -1)
    print("Element not present");
else
    print("Element found at index "
                            $result);
  
// This code is contributed by mits
?>


Javascript




// Javascript program to implement Binary Search for strings
  
// Returns index of x if it is present in arr[],
// else return -1
function binarySearch(arr, x) {
    let l = 0,
        r = arr.length - 1;
    // Loop to implement Binary Search
    while (l <= r) {
  
        // Calculatiing mid
        let m = l + Math.floor((r - l) / 2);
  
        let res = x.localeCompare(arr[m]);
  
        // Check if x is present at mid
        if (res == 0)
            return m;
  
        // If x greater, ignore left half
        if (res > 0)
            l = m + 1;
  
        // If x is smaller, ignore right half
        else
            r = m - 1;
    }
  
    return -1;
}
  
// Driver method to test above
let arr = ["contribute", "neveropen", "ide", "practice"];
let x = "ide";
let result = binarySearch(arr, x);
if (result == -1)
    console.log("Element not present");
else
    console.log("Element found at " +
        "index " + result);
  
// This code is contributed by rag2127


Output

Element found at index 2

Time Complexity: O(log(n) * len), where n = no. of string in arr & len = max length of the string for comparing two strings we need O(len) time
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments