Inversion Count for an array indicates – how far (or close) the array is from being sorted. If the array is already sorted then inversion count is 0. If the array is sorted in reverse order that inversion count is the maximum.
Two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j.
For simplicity, we may assume that all elements are unique.
So, our task is to count the number of inversions in the array. That is the number of pair of elements (a[i], a[j]) such that:
- a[i] > a[j] and,
- i < j.
Example:
Input: arr[] = {8, 4, 2, 1} Output: 6 Given array has six inversions (8, 4), (4, 2), (8, 2), (8, 1), (4, 1), (2, 1). Input: arr[] = { 1, 20, 6, 4, 5 } Output: 5
Approach:
We will iterate backwards in the array and store each element into the Trie. To store a number in Trie we
have to break the number into its binary form and If the bit is 0 then it signifies we store that bit into the left pointer of the current node and if it is 1 we will store it into the right pointer of the current node and correspondingly change the current node. We will also maintain the count which signifies how many numbers follow the same path till that node.
Structure of Node of the Trie
struct node{ int count; node* left; node* right; };
At any point, while we are storing the bits, we happen to move to the right pointer (i.e the bit is 1) we will check if the left child exists then this means there are numbers which are smaller than the current number who are already been stored into the Trie, these numbers are only the inversion count so we will add these to the count.
Below is the implementation of the approach
C++
// C++ implementation #include <iostream> using namespace std; // Structure of the node struct Node { int count; Node* left; Node* right; }; // function to initialize // new node Node* makeNewNode() { Node* temp = new Node; temp->count = 1; temp->left = NULL; temp->right = NULL; return temp; } // Insert element in trie void insertElement( int num, Node* root, int & ans) { // Converting the number // into binary form for ( int i = 63; i >= 0; i--) { // Checking if the i-th // bit ios set or not int a = (num & (1 << i)); // If the bit is 1 if (a != 0) { // if the bit is 1 that means // we have to go to the right // but we also checks if left // pointer exists i.e there is // at least a number smaller than // the current number already in // the trie we add that count // to ans if (root->left != NULL) ans += root->left->count; // If right pointer is not NULL // we just iterate to that // position and increment the count if (root->right != NULL) { root = root->right; root->count += 1; } // If right is NULL we add a new // node over there and initialize // the count with 1 else { Node* temp = makeNewNode(); root->right = temp; root = root->right; } } // if the bit is 0 else { // We have to iterate to left, // we first check if left // exists? if yes then change // the root and the count if (root->left != NULL) { root = root->left; root->count++; } // otherwise we create // the left node else { Node* temp = makeNewNode(); root->left = temp; root = root->left; } } } } // function to count // the inversions int getInvCount( int arr[], int n) { Node* head = makeNewNode(); int ans = 0; for ( int i = n - 1; i >= 0; i--) { // inserting each element in Trie insertElement(arr[i], head, ans); } return ans; } // Driver Code int main() { int arr[] = { 8, 4, 2, 1 }; int n = sizeof (arr) / sizeof ( int ); cout << "Number of inversions are : " << getInvCount(arr, n); return 0; } |
Java
// Java implementation of above idea import java.util.*; class GFG { // Structure of the node static class Node { int count; Node left; Node right; }; static int ans; // function to initialize // new node static Node makeNewNode() { Node temp = new Node(); temp.count = 1 ; temp.left = null ; temp.right = null ; return temp; } // Insert element in trie static void insertElement( int num, Node root) { // Converting the number // into binary form for ( int i = 63 ; i >= 0 ; i--) { // Checking if the i-th // bit ios set or not int a = (num & ( 1 << i)); // If the bit is 1 if (a != 0 ) { // if the bit is 1 that means // we have to go to the right // but we also checks if left // pointer exists i.e there is // at least a number smaller than // the current number already in // the trie we add that count // to ans if (root.left != null ) ans += root.left.count; // If right pointer is not null // we just iterate to that // position and increment the count if (root.right != null ) { root = root.right; root.count += 1 ; } // If right is null we add a new // node over there and initialize // the count with 1 else { Node temp = makeNewNode(); root.right = temp; root = root.right; } } // if the bit is 0 else { // We have to iterate to left, // we first check if left // exists? if yes then change // the root and the count if (root.left != null ) { root = root.left; root.count++; } // otherwise we create // the left node else { Node temp = makeNewNode(); root.left = temp; root = root.left; } } } } // function to count // the inversions static int getInvCount( int arr[], int n) { Node head = makeNewNode(); ans = 0 ; for ( int i = n - 1 ; i >= 0 ; i--) { // inserting each element in Trie insertElement(arr[i], head); } return ans; } // Driver Code public static void main(String[] args) { int arr[] = { 8 , 4 , 2 , 1 }; int n = arr.length; System.out.print( "Number of inversions are : " + getInvCount(arr, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation # Structure of the node class Node: def __init__( self ): self .left = self .right = None self .count = 1 # function to initialize # new node def makeNewNode(): temp = Node() return temp # Insert element in trie def insertElement(num, root, ans): # Converting the number # into binary form for i in range ( 63 , - 1 , - 1 ): # Checking if the i-th # bit ios set or not a = (num & ( 1 << i)); # If the bit is 1 if (a ! = 0 ): # if the bit is 1 that means # we have to go to the right # but we also checks if left # pointer exists i.e there is # at least a number smaller than # the current number already in # the trie we add that count # to ans if (root.left ! = None ): ans + = root.left.count; # If right pointer is not None # we just iterate to that # position and increment the count if (root.right ! = None ): root = root.right; root.count + = 1 ; # If right is None we add a new # node over there and initialize # the count with 1 else : temp = makeNewNode(); root.right = temp; root = root.right; # if the bit is 0 else : # We have to iterate to left, # we first check if left # exists? if yes then change # the root and the count if (root.left ! = None ): root = root.left; root.count + = 1 # otherwise we create # the left node else : temp = makeNewNode(); root.left = temp; root = root.left; return ans # function to count # the inversions def getInvCount(arr, n): head = makeNewNode(); ans = 0 ; for i in range (n - 1 , - 1 , - 1 ): # inserting each element in Trie ans = insertElement(arr[i], head, ans); return ans; # Driver Code if __name__ = = '__main__' : arr = [ 8 , 4 , 2 , 1 ] n = len (arr) print ( "Number of inversions are : " + str (getInvCount(arr, n))) # This code is contributed by rutvik_56 |
C#
// C# implementation of above idea using System; class GFG { // Structure of the node public class Node { public int count; public Node left; public Node right; }; static int ans; // function to initialize // new node static Node makeNewNode() { Node temp = new Node(); temp.count = 1; temp.left = null ; temp.right = null ; return temp; } // Insert element in trie static void insertElement( int num, Node root) { // Converting the number // into binary form for ( int i = 63; i >= 0; i--) { // Checking if the i-th // bit ios set or not int a = (num & (1 << i)); // If the bit is 1 if (a != 0) { // if the bit is 1 that means // we have to go to the right // but we also checks if left // pointer exists i.e there is // at least a number smaller than // the current number already in // the trie we add that count // to ans if (root.left != null ) ans += root.left.count; // If right pointer is not null // we just iterate to that // position and increment the count if (root.right != null ) { root = root.right; root.count += 1; } // If right is null we add a new // node over there and initialize // the count with 1 else { Node temp = makeNewNode(); root.right = temp; root = root.right; } } // if the bit is 0 else { // We have to iterate to left, // we first check if left // exists? if yes then change // the root and the count if (root.left != null ) { root = root.left; root.count++; } // otherwise we create // the left node else { Node temp = makeNewNode(); root.left = temp; root = root.left; } } } } // function to count the inversions static int getInvCount( int []arr, int n) { Node head = makeNewNode(); ans = 0; for ( int i = n - 1; i >= 0; i--) { // inserting each element in Trie insertElement(arr[i], head); } return ans; } // Driver Code public static void Main(String[] args) { int []arr = { 8, 4, 2, 1 }; int n = arr.Length; Console.Write( "Number of inversions are : " + getInvCount(arr, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of above idea // Structure of the node class Node { constructor() { this .count = 0; this .left = null ; this .right = null ; } }; var ans = 0; // function to initialize // new node function makeNewNode() { var temp = new Node(); temp.count = 1; temp.left = null ; temp.right = null ; return temp; } // Insert element in trie function insertElement(num, root) { // Converting the number // into binary form for ( var i = 63; i >= 0; i--) { // Checking if the i-th // bit ios set or not var a = (num & (1 << i)); // If the bit is 1 if (a != 0) { // if the bit is 1 that means // we have to go to the right // but we also checks if left // pointer exists i.e there is // at least a number smaller than // the current number already in // the trie we add that count // to ans if (root.left != null ) ans += root.left.count; // If right pointer is not null // we just iterate to that // position and increment the count if (root.right != null ) { root = root.right; root.count += 1; } // If right is null we add a new // node over there and initialize // the count with 1 else { var temp = makeNewNode(); root.right = temp; root = root.right; } } // if the bit is 0 else { // We have to iterate to left, // we first check if left // exists? if yes then change // the root and the count if (root.left != null ) { root = root.left; root.count++; } // otherwise we create // the left node else { var temp = makeNewNode(); root.left = temp; root = root.left; } } } } // function to count the inversions function getInvCount(arr, n) { var head = makeNewNode(); ans = 0; for ( var i = n - 1; i >= 0; i--) { // inserting each element in Trie insertElement(arr[i], head); } return ans; } // Driver Code var arr = [8, 4, 2, 1]; var n = arr.length; document.write( "Number of inversions are : " + getInvCount(arr, n)); </script> |
Number of inversions are : 6
Time Complexity:
Auxiliary Space:
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!