Given an N-ary tree and an integer K, the task is to print the Kth ancestors of all the nodes of the tree in level order manner. If K ancestors does not exist for a node, then print -1 for that node.
Examples:
Input: K = 2
Output: -1 -1 -1 1 1 1 1 1 1
Explanation:
2nd ancestor does not exist for nodes 1, 2 and 3
2nd ancestor of nodes 4, 5, 6, 7, 8, 9 is 1.Input: K = 1
Output: -1 1 1 2 2 2 3 3 3
Approach: The approach is to use DFS to find the ancestors of all the nodes. Below are the steps:
- The Kth parent of any node can be found by using DFS, and storing all parents of a node in a temporary vector say temp[].
- Whenever a node is visited in DFS, it is pushed in the temp vector.
- At the end of DFS, the currently visited node is popped from the temp vector.
- For the currently visited node, the vector contains all the ancestors of the node.
- The Kth node from the end of the vector is the Kth ancestor of the currently visited node, so store it in a ancestor[] array.
Below is the implementation of the above approach:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // Function to add an // edge in the tree void addEdge(vector< int > v[], int x, int y) { v[x].push_back(y); v[y].push_back(x); } // DFS to find the Kth // ancestor of every node void dfs(vector< int > tree[], vector< int >& temp, int ancestor[], int u, int parent, int k) { // Pushing current node // in the vector temp.push_back(u); // Traverse its neighbors for ( auto i : tree[u]) { if (i == parent) continue ; dfs(tree, temp, ancestor, i, u, k); } temp.pop_back(); // If K ancestors are not // found for current node if (temp.size() < k) { ancestor[u] = -1; } else { // Add the Kth ancestor // for the node ancestor[u] = temp[temp.size() - k]; } } // Function to find Kth // ancestor of each node void KthAncestor( int N, int K, int E, int edges[][2]) { // Building the tree vector< int > tree[N + 1]; for ( int i = 0; i < E; i++) { addEdge(tree, edges[i][0], edges[i][1]); } // Stores all parents of a node vector< int > temp; // Store Kth ancestor // of all nodes int ancestor[N + 1]; dfs(tree, temp, ancestor, 1, 0, K); // Print the ancestors for ( int i = 1; i <= N; i++) { cout << ancestor[i] << " " ; } } int main() { // Given N and K int N = 9; int K = 2; // Given edges of n-ary tree int E = 8; int edges[8][2] = { { 1, 2 }, { 1, 3 }, { 2, 4 }, { 2, 5 }, { 2, 6 }, { 3, 7 }, { 3, 8 }, { 3, 9 } }; // Function Call KthAncestor(N, K, E, edges); return 0; } |
Java
// Java implementation of // the above approach import java.util.*; class GFG{ // Function to add an // edge in the tree static void addEdge(Vector<Integer> v[], int x, int y) { v[x].add(y); v[y].add(x); } // DFS to find the Kth // ancestor of every node static void dfs(Vector<Integer> tree[], Vector<Integer> temp, int ancestor[], int u, int parent, int k) { // Pushing current node // in the vector temp.add(u); // Traverse its neighbors for ( int i : tree[u]) { if (i == parent) continue ; dfs(tree, temp, ancestor, i, u, k); } temp.remove(temp.size() - 1 ); // If K ancestors are not // found for current node if (temp.size() < k) { ancestor[u] = - 1 ; } else { // Add the Kth ancestor // for the node ancestor[u] = temp.get(temp.size() - k); } } // Function to find Kth // ancestor of each node static void KthAncestor( int N, int K, int E, int edges[][]) { // Building the tree @SuppressWarnings ( "unchecked" ) Vector<Integer> []tree = new Vector[N + 1 ]; for ( int i = 0 ; i < tree.length; i++) tree[i] = new Vector<Integer>(); for ( int i = 0 ; i < E; i++) { addEdge(tree, edges[i][ 0 ], edges[i][ 1 ]); } // Stores all parents of a node Vector<Integer> temp = new Vector<Integer>(); // Store Kth ancestor // of all nodes int []ancestor = new int [N + 1 ]; dfs(tree, temp, ancestor, 1 , 0 , K); // Print the ancestors for ( int i = 1 ; i <= N; i++) { System.out.print(ancestor[i] + " " ); } } // Driver code public static void main(String[] args) { // Given N and K int N = 9 ; int K = 2 ; // Given edges of n-ary tree int E = 8 ; int edges[][] = { { 1 , 2 }, { 1 , 3 }, { 2 , 4 }, { 2 , 5 }, { 2 , 6 }, { 3 , 7 }, { 3 , 8 }, { 3 , 9 } }; // Function call KthAncestor(N, K, E, edges); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 implementation of # the above approach # Function to add an # edge in the tree def addEdge(v, x, y): v[x].append(y) v[y].append(x) # DFS to find the Kth # ancestor of every node def dfs(tree, temp, ancestor, u, parent, k): # Pushing current node # in the vector temp.append(u) # Traverse its neighbors for i in tree[u]: if (i = = parent): continue dfs(tree, temp, ancestor, i, u, k) temp.pop() # If K ancestors are not # found for current node if ( len (temp) < k): ancestor[u] = - 1 else : # Add the Kth ancestor # for the node ancestor[u] = temp[ len (temp) - k] # Function to find Kth # ancestor of each node def KthAncestor(N, K, E, edges): # Building the tree tree = [[] for i in range (N + 1 )] for i in range (E): addEdge(tree, edges[i][ 0 ], edges[i][ 1 ]) # Stores all parents of a node temp = [] # Store Kth ancestor # of all nodes ancestor = [ 0 ] * (N + 1 ) dfs(tree, temp, ancestor, 1 , 0 , K) # Print the ancestors for i in range ( 1 , N + 1 ): print (ancestor[i], end = " " ) # Driver code if __name__ = = '__main__' : # Given N and K N = 9 K = 2 # Given edges of n-ary tree E = 8 edges = [ [ 1 , 2 ], [ 1 , 3 ], [ 2 , 4 ], [ 2 , 5 ], [ 2 , 6 ], [ 3 , 7 ], [ 3 , 8 ], [ 3 , 9 ] ] # Function call KthAncestor(N, K, E, edges) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of // the above approach using System; using System.Collections.Generic; class GFG{ // Function to add an // edge in the tree static void addEdge(List< int > []v, int x, int y) { v[x].Add(y); v[y].Add(x); } // DFS to find the Kth // ancestor of every node static void dfs(List< int > []tree, List< int > temp, int []ancestor, int u, int parent, int k) { // Pushing current node // in the vector temp.Add(u); // Traverse its neighbors foreach ( int i in tree[u]) { if (i == parent) continue ; dfs(tree, temp, ancestor, i, u, k); } temp.RemoveAt(temp.Count - 1); // If K ancestors are not // found for current node if (temp.Count < k) { ancestor[u] = -1; } else { // Add the Kth ancestor // for the node ancestor[u] = temp[temp.Count - k]; } } // Function to find Kth // ancestor of each node static void KthAncestor( int N, int K, int E, int [,]edges) { // Building the tree List< int > []tree = new List< int >[N + 1]; for ( int i = 0; i < tree.Length; i++) tree[i] = new List< int >(); for ( int i = 0; i < E; i++) { addEdge(tree, edges[i, 0], edges[i, 1]); } // Stores all parents of a node List< int > temp = new List< int >(); // Store Kth ancestor // of all nodes int []ancestor = new int [N + 1]; dfs(tree, temp, ancestor, 1, 0, K); // Print the ancestors for ( int i = 1; i <= N; i++) { Console.Write(ancestor[i] + " " ); } } // Driver code public static void Main(String[] args) { // Given N and K int N = 9; int K = 2; // Given edges of n-ary tree int E = 8; int [,]edges = { { 1, 2 }, { 1, 3 }, { 2, 4 }, { 2, 5 }, { 2, 6 }, { 3, 7 }, { 3, 8 }, { 3, 9 } }; // Function call KthAncestor(N, K, E, edges); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // JavaScript program for the above approach // Function to add an // edge in the tree function addEdge(v, x, y) { v[x].push(y); v[y].push(x); } // DFS to find the Kth // ancestor of every node function dfs(tree, temp, ancestor, u, parent, k) { // Pushing current node // in the vector temp.push(u); // Traverse its neighbors for (let i = 0; i < tree[u].length; i++) { if (tree[u][i] == parent) continue ; dfs(tree, temp, ancestor, tree[u][i], u, k); } temp.pop(); // If K ancestors are not // found for current node if (temp.length < k) { ancestor[u] = -1; } else { // Add the Kth ancestor // for the node ancestor[u] = temp[temp.length - k]; } } // Function to find Kth // ancestor of each node function KthAncestor(N, K, E, edges) { // Building the tree let tree = new Array(N + 1); for (let i = 0; i < tree.length; i++) tree[i] = []; for (let i = 0; i < E; i++) { addEdge(tree, edges[i][0], edges[i][1]); } // Stores all parents of a node let temp = []; // Store Kth ancestor // of all nodes let ancestor = new Array(N + 1); dfs(tree, temp, ancestor, 1, 0, K); // Print the ancestors for (let i = 1; i <= N; i++) { document.write(ancestor[i] + " " ); } } // Given N and K let N = 9; let K = 2; // Given edges of n-ary tree let E = 8; let edges = [ [ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 2, 5 ], [ 2, 6 ], [ 3, 7 ], [ 3, 8 ], [ 3, 9 ] ]; // Function call KthAncestor(N, K, E, edges); </script> |
-1 -1 -1 1 1 1 1 1 1
Time complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!