Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIKth ancestor of all nodes in an N-ary tree using DFS

Kth ancestor of all nodes in an N-ary tree using DFS

Given an N-ary tree and an integer K, the task is to print the Kth ancestors of all the nodes of the tree in level order manner. If K ancestors does not exist for a node, then print -1 for that node.

Examples: 
 

Input: K = 2 
 

Output: -1 -1 -1 1 1 1 1 1 1 
Explanation: 
2nd ancestor does not exist for nodes 1, 2 and 3 
2nd ancestor of nodes 4, 5, 6, 7, 8, 9 is 1.

Input: K = 1 
 

Output: -1 1 1 2 2 2 3 3 3 
 

 

 

Approach: The approach is to use DFS to find the ancestors of all the nodes. Below are the steps:
 

  1. The Kth parent of any node can be found by using DFS, and storing all parents of a node in a temporary vector say temp[].
  2. Whenever a node is visited in DFS, it is pushed in the temp vector.
  3. At the end of DFS, the currently visited node is popped from the temp vector.
  4. For the currently visited node, the vector contains all the ancestors of the node.
  5. The Kth node from the end of the vector is the Kth ancestor of the currently visited node, so store it in a ancestor[] array.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to add an
// edge in the tree
void addEdge(vector<int> v[],
             int x, int y)
{
    v[x].push_back(y);
    v[y].push_back(x);
}
 
// DFS to find the Kth
// ancestor of every node
void dfs(vector<int> tree[],
         vector<int>& temp,
         int ancestor[], int u,
         int parent, int k)
{
    // Pushing current node
    // in the vector
    temp.push_back(u);
 
    // Traverse its neighbors
    for (auto i : tree[u]) {
        if (i == parent)
            continue;
        dfs(tree, temp,
            ancestor, i, u, k);
    }
 
    temp.pop_back();
 
    // If K ancestors are not
    // found for current node
    if (temp.size() < k) {
        ancestor[u] = -1;
    }
    else {
 
        // Add the Kth ancestor
        // for the node
        ancestor[u]
            = temp[temp.size() - k];
    }
}
 
// Function to find Kth
// ancestor of each node
void KthAncestor(int N, int K, int E,
                 int edges[][2])
{
 
    // Building the tree
    vector<int> tree[N + 1];
    for (int i = 0; i < E; i++) {
        addEdge(tree, edges[i][0],
                edges[i][1]);
    }
 
    // Stores all parents of a node
    vector<int> temp;
 
    // Store Kth ancestor
    // of all nodes
    int ancestor[N + 1];
 
    dfs(tree, temp, ancestor, 1, 0, K);
 
    // Print the ancestors
    for (int i = 1; i <= N; i++) {
        cout << ancestor[i] << " ";
    }
}
 
int main()
{
    // Given N and K
    int N = 9;
    int K = 2;
 
    // Given edges of n-ary tree
    int E = 8;
    int edges[8][2] = { { 1, 2 }, { 1, 3 }, { 2, 4 },
                        { 2, 5 }, { 2, 6 }, { 3, 7 },
                        { 3, 8 }, { 3, 9 } };
 
    // Function Call
    KthAncestor(N, K, E, edges);
    return 0;
}


Java




// Java implementation of
// the above approach
import java.util.*;
 
class GFG{
 
// Function to add an
// edge in the tree
static void addEdge(Vector<Integer> v[],
                    int x, int y)
{
    v[x].add(y);
    v[y].add(x);
}
 
// DFS to find the Kth
// ancestor of every node
static void dfs(Vector<Integer> tree[],
                Vector<Integer> temp,
                int ancestor[], int u,
                int parent, int k)
{
     
    // Pushing current node
    // in the vector
    temp.add(u);
 
    // Traverse its neighbors
    for(int i : tree[u])
    {
        if (i == parent)
            continue;
             
        dfs(tree, temp,
            ancestor, i, u, k);
    }
 
    temp.remove(temp.size() - 1);
 
    // If K ancestors are not
    // found for current node
    if (temp.size() < k)
    {
        ancestor[u] = -1;
    }
    else
    {
 
        // Add the Kth ancestor
        // for the node
        ancestor[u] = temp.get(temp.size() - k);
    }
}
 
// Function to find Kth
// ancestor of each node
static void KthAncestor(int N, int K, int E,
                        int edges[][])
{
 
    // Building the tree
    @SuppressWarnings("unchecked")
    Vector<Integer> []tree = new Vector[N + 1];
    for(int i = 0; i < tree.length; i++)
        tree[i] = new Vector<Integer>();
         
    for(int i = 0; i < E; i++)
    {
        addEdge(tree, edges[i][0],
                      edges[i][1]);
    }
 
    // Stores all parents of a node
    Vector<Integer> temp = new Vector<Integer>();
 
    // Store Kth ancestor
    // of all nodes
    int []ancestor = new int[N + 1];
 
    dfs(tree, temp, ancestor, 1, 0, K);
 
    // Print the ancestors
    for(int i = 1; i <= N; i++)
    {
        System.out.print(ancestor[i] + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given N and K
    int N = 9;
    int K = 2;
 
    // Given edges of n-ary tree
    int E = 8;
    int edges[][] = { { 1, 2 }, { 1, 3 },
                      { 2, 4 }, { 2, 5 },
                      { 2, 6 }, { 3, 7 },
                      { 3, 8 }, { 3, 9 } };
 
    // Function call
    KthAncestor(N, K, E, edges);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 implementation of
# the above approach
 
# Function to add an
# edge in the tree
def addEdge(v, x, y):
 
    v[x].append(y)
    v[y].append(x)
 
# DFS to find the Kth
# ancestor of every node
def dfs(tree, temp, ancestor, u, parent, k):
 
    # Pushing current node
    # in the vector
    temp.append(u)
 
    # Traverse its neighbors
    for i in tree[u]:
        if (i == parent):
            continue
             
        dfs(tree, temp, ancestor, i, u, k)
 
    temp.pop()
 
    # If K ancestors are not
    # found for current node
    if (len(temp) < k):
        ancestor[u] = -1
 
    else:
 
        # Add the Kth ancestor
        # for the node
        ancestor[u] = temp[len(temp) - k]
 
# Function to find Kth
# ancestor of each node
def KthAncestor(N, K, E, edges):
 
    # Building the tree
    tree = [[] for i in range(N + 1)]
    for i in range(E):
        addEdge(tree, edges[i][0],
                      edges[i][1])
 
    # Stores all parents of a node
    temp = []
 
    # Store Kth ancestor
    # of all nodes
    ancestor = [0] * (N + 1)
 
    dfs(tree, temp, ancestor, 1, 0, K)
 
    # Print the ancestors
    for i in range(1, N + 1):
        print(ancestor[i], end = " ")
 
# Driver code
if __name__ == '__main__':
     
    # Given N and K
    N = 9
    K = 2
 
    # Given edges of n-ary tree
    E = 8
    edges = [ [ 1, 2 ], [ 1, 3 ],
              [ 2, 4 ], [ 2, 5 ],
              [ 2, 6 ], [ 3, 7 ],
              [ 3, 8 ], [ 3, 9 ] ]
 
    # Function call
    KthAncestor(N, K, E, edges)
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to add an
// edge in the tree
static void addEdge(List<int> []v,
                    int x, int y)
{
    v[x].Add(y);
    v[y].Add(x);
}
 
// DFS to find the Kth
// ancestor of every node
static void dfs(List<int> []tree,
                List<int> temp,
                int []ancestor, int u,
                int parent, int k)
{
     
    // Pushing current node
    // in the vector
    temp.Add(u);
 
    // Traverse its neighbors
    foreach(int i in tree[u])
    {
        if (i == parent)
            continue;
             
        dfs(tree, temp,
            ancestor, i, u, k);
    }
 
    temp.RemoveAt(temp.Count - 1);
 
    // If K ancestors are not
    // found for current node
    if (temp.Count < k)
    {
        ancestor[u] = -1;
    }
    else
    {
 
        // Add the Kth ancestor
        // for the node
        ancestor[u] = temp[temp.Count - k];
    }
}
 
// Function to find Kth
// ancestor of each node
static void KthAncestor(int N, int K, int E,
                        int [,]edges)
{
 
    // Building the tree
    List<int> []tree = new List<int>[N + 1];
    for(int i = 0; i < tree.Length; i++)
        tree[i] = new List<int>();
         
    for(int i = 0; i < E; i++)
    {
        addEdge(tree, edges[i, 0],
                      edges[i, 1]);
    }
 
    // Stores all parents of a node
    List<int> temp = new List<int>();
 
    // Store Kth ancestor
    // of all nodes
    int []ancestor = new int[N + 1];
 
    dfs(tree, temp, ancestor, 1, 0, K);
 
    // Print the ancestors
    for(int i = 1; i <= N; i++)
    {
        Console.Write(ancestor[i] + " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given N and K
    int N = 9;
    int K = 2;
 
    // Given edges of n-ary tree
    int E = 8;
    int [,]edges = { { 1, 2 }, { 1, 3 },
                     { 2, 4 }, { 2, 5 },
                     { 2, 6 }, { 3, 7 },
                     { 3, 8 }, { 3, 9 } };
 
    // Function call
    KthAncestor(N, K, E, edges);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
    // JavaScript program for the above approach
     
    // Function to add an
    // edge in the tree
    function addEdge(v, x, y)
    {
        v[x].push(y);
        v[y].push(x);
    }
 
    // DFS to find the Kth
    // ancestor of every node
    function dfs(tree, temp, ancestor, u, parent, k)
    {
 
        // Pushing current node
        // in the vector
        temp.push(u);
 
        // Traverse its neighbors
        for(let i = 0; i < tree[u].length; i++)
        {
            if (tree[u][i] == parent)
                continue;
 
            dfs(tree, temp, ancestor, tree[u][i], u, k);
        }
 
        temp.pop();
 
        // If K ancestors are not
        // found for current node
        if (temp.length < k)
        {
            ancestor[u] = -1;
        }
        else
        {
 
            // Add the Kth ancestor
            // for the node
            ancestor[u] = temp[temp.length - k];
        }
    }
 
    // Function to find Kth
    // ancestor of each node
    function KthAncestor(N, K, E, edges)
    {
 
        // Building the tree
        let tree = new Array(N + 1);
        for(let i = 0; i < tree.length; i++)
            tree[i] = [];
 
        for(let i = 0; i < E; i++)
        {
            addEdge(tree, edges[i][0], edges[i][1]);
        }
 
        // Stores all parents of a node
        let temp = [];
 
        // Store Kth ancestor
        // of all nodes
        let ancestor = new Array(N + 1);
 
        dfs(tree, temp, ancestor, 1, 0, K);
 
        // Print the ancestors
        for(let i = 1; i <= N; i++)
        {
            document.write(ancestor[i] + " ");
        }
    }
     
    // Given N and K
    let N = 9;
    let K = 2;
   
    // Given edges of n-ary tree
    let E = 8;
    let edges = [ [ 1, 2 ], [ 1, 3 ],
                     [ 2, 4 ], [ 2, 5 ],
                     [ 2, 6 ], [ 3, 7 ],
                     [ 3, 8 ], [ 3, 9 ] ];
   
    // Function call
    KthAncestor(N, K, E, edges);
    
</script>


Output: 

-1 -1 -1 1 1 1 1 1 1

 

Time complexity: O(N) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments