Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIChoose two elements from the given array such that their sum is...

Choose two elements from the given array such that their sum is not present in any of the arrays

Given two arrays A[] and B[], the task is to choose two elements X and Y such that X belongs to A[] and Y belongs to B[] and (X + Y) must not be present in any of the array.
Examples: 

Input: A[] = {3, 2, 2}, B[] = {1, 5, 7, 7, 9} 
Output: 3 9 
3 + 9 = 12 and 12 is not present in 
any of the given arrays.
Input: A[] = {1, 3, 5, 7}, B[] = {7, 5, 3, 1} 
Output: 7 7 

Approach: Choose X as the maximum element from A[] and Y as the maximum element from B[]. Now, it is obvious that (X + Y) will be greater than the maximum of both the arrays i.e. it will not be present in any of the arrays.
Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the numbers from
// the given arrays such that their
// sum is not present in any
// of the given array
void findNum(int a[], int n, int b[], int m)
{
    // Find the maximum element
    // from both the arrays
    int x = *max_element(a, a + n);
    int y = *max_element(b, b + m);
    cout << x << " " << y;
}
 
// Driver code
int main()
{
    int a[] = { 3, 2, 2 };
    int n = sizeof(a) / sizeof(int);
    int b[] = { 1, 5, 7, 7, 9 };
    int m = sizeof(b) / sizeof(int);
 
    findNum(a, n, b, m);
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// find maximum element in an array
static int max_element(int a[], int n)
{
    int m = Integer.MIN_VALUE;
     
    for(int i = 0; i < n; i++)
        m = Math.max(m, a[i]);
     
    return m;
}
 
// Function to find the numbers from
// the given arrays such that their
// sum is not present in any
// of the given array
static void findNum(int a[], int n,
                    int b[], int m)
{
    // Find the maximum element
    // from both the arrays
    int x = max_element(a, n);
    int y = max_element(b, m);
    System.out.print(x + " " + y);
}
 
// Driver code
public static void main(String args[])
{
    int a[] = { 3, 2, 2 };
    int n = a.length;
    int b[] = { 1, 5, 7, 7, 9 };
    int m = b.length;
 
    findNum(a, n, b, m);
}
}
 
// This code is contributed by Arnub Kundu


Python3




# Python3 implementation of the approach
 
# Function to find the numbers from
# the given arrays such that their
# sum is not present in any
# of the given array
def findNum(a, n, b, m) :
 
    # Find the maximum element
    # from both the arrays
    x = max(a);
    y = max(b);
    print(x, y);
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 3, 2, 2 ];
    n = len(a);
     
    b = [ 1, 5, 7, 7, 9 ];
    m = len(b);
 
    findNum(a, n, b, m);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // find maximum element in an array
    static int max_element(int []a, int n)
    {
        int m = int.MinValue;
         
        for(int i = 0; i < n; i++)
            m = Math.Max(m, a[i]);
         
        return m;
    }
     
    // Function to find the numbers from
    // the given arrays such that their
    // sum is not present in any
    // of the given array
    static void findNum(int []a, int n,
                        int []b, int m)
    {
        // Find the maximum element
        // from both the arrays
        int x = max_element(a, n);
        int y = max_element(b, m);
        Console.Write(x + " " + y);
    }
     
    // Driver code
    public static void Main()
    {
        int []a = { 3, 2, 2 };
        int n = a.Length;
        int []b = { 1, 5, 7, 7, 9 };
        int m = b.Length;
     
        findNum(a, n, b, m);
    }
}
 
// This code is contributed by kanugargng


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the numbers from
// the given arrays such that their
// sum is not present in any
// of the given array
function findNum(a, n, b, m)
{
    // Find the maximum element
    // from both the arrays
    var x = a.reduce(function(a, b) { return Math.max(a, b); });
    var y = b.reduce(function(a, b) { return Math.max(a, b); });
    document.write(x + " " + y);
}
 
// Driver code
var a = [ 3, 2, 2 ];
var n = a.length;
var b = [ 1, 5, 7, 7, 9 ]
var m = b.length;
findNum(a, n, b, m);
 
// This code is contributed by rutvik_56.
</script>


Output: 

3 9

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments