Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIDivisible by 37 for large numbers

Divisible by 37 for large numbers

Given a large number n, we need to check whether it is divisible by 37. Print true if it is divisible by 37 otherwise False.
Examples: 

Input  : 74
Output : True

Input : 73
Output : False

Input : 8955795758 (10 digit number)
Output : True

A r digit number m whose digital form is (ar-1 ar-2….a2 a1 a0) is divisible by 37 if and only if the sum of series of numbers (a2 a1 a0) + (a5 a4 a3) + (a8 a7 a6) + … is divisible by 37. The triplets of digits within parenthesis represent 3-digit number in digital form.

The given number n can be written as a sum of powers of 1000 as follows. 
n = (a2 a1 a0) + (a5 a4 a3)*1000 + (a8 a7 a6)*(1000*1000) +…. 
As 1000 = (1)(mod 37), 1000 as per congruence relation. 
For a positive integer n, two numbers a and b are said to be congruent modulo n, if their difference 
(a – b) is an integer multiple of n (that is, if there is an integer k such that a – b = kn). This congruence relation is typically considered when a and b are integers, and is denoted
{\displaystyle a\equiv b{\pmod {m}}\,}
Hence we can write: 
n = { (a2a1a0) + (a5a4a3)* (1) + (a8a7a6)* (1)*(1)+…..}(mod 37), 
Thus n is divisible by 37 if and if only if the series is divisible by 37.

Examples: 

Input : 8955795758 (10 digit number)
Output : True
Explanation:
     We express the number in terms of 
     triplets of digits as follows.
     (008)(955)(795)(758)
     Now, 758 + 795 + 955 + 8 = 2516
     For 2516, the triplets will be:
     (002)(516)
     Now 516 + 2 = 518 which is divisible 
     by 37. Hence the number is divisible 
     by 37.

Input : 189710809179199 (15 digit number)
Output : False

A simple and efficient method is to take input in form of string (make its length in form of 3*m by adding 0 to left of number if required) and then you have to add the digits in blocks of three from right to left until it become a 3 digit number to form an series . Calculate the sum of the series. If the sum of series has more than 3 digits in it, again recursively call this function. 
Finally check whether the resultant sum is divisible by 37 or not.
Here is the program implementation to check divisibility by 37.
 

C++




// CPP program for checking divisibility by 37
// function divisible37 which returns True if
// number is divisible by 37 otherwise False
#include <bits/stdc++.h>
using namespace std;
 
int divisibleby37(string n){
    int l = n.length();
    if (n == "0")
        return 0;
 
    // Append required 0's at the beginning
    if (l % 3 == 1){
        n = "00"+ n;
        l += 2;
    }
    else if (l % 3 == 2){
        n = "0"+ n;
        l += 1;
    }
     
    int gSum = 0;
     
    while (l != 0){
 
    // group saves 3-digit group
    string group = n.substr(l - 3, l);
        l = l - 3;
    int gvalue = (group[0] - '0') * 100 +
                 (group[1] - '0') * 10 +
                 (group[2] - '0') * 1;
                  
    // add the series
    gSum = gSum + gvalue;
    }
     
    // if sum of series gSum has minimum 4
    // digits in it, then again recursive
    // call divisibleby37 function
    if (gSum >= 1000)
        return (divisibleby37(to_string(gSum)));
    else
        return (gSum % 37 == 0);
 
}
 
// driver program to test the above function
int main(){
 
    string s="8955795758";
     
    if (divisibleby37(s))
    cout<<"True";
    else
    cout<<"False";
    return 0;
}
// This code is contributed by Prerna Saini


Java




// Java program for checking
// divisibility by 37
 
class GFG
{
// function divisible37 which
// returns True if number is
// divisible by 37 otherwise False
static int divisibleby37(String n1)
{
    int l = n1.length();
    if (n1 == "0")
        return 0;
 
    // Append required 0's
    // at the beginning
    if (l % 3 == 1)
    {
        n1 = "00"+ n1;
        l += 2;
    }
    else if (l % 3 == 2)
    {
        n1 = "0"+ n1;
        l += 1;
    }
    char[]  n= n1.toCharArray();
    int gSum = 0;
    while (l != 0)
    {
 
    // group saves 3-digit group
    int gvalue;
    if(l == 2)
        gvalue = ((int)n[(l - 2)] - 48) * 100 +
                ((int)n[(l - 1)] - 48) * 10;
    else if(l == 1)
        gvalue = ((int)n[(l - 1)] - 48) * 100;
    else
        gvalue = ((int)n[(l - 3)] - 48) * 100 +
                ((int)n[(l - 2)] - 48) * 10 +
                ((int)n[(l - 1)] - 48) * 1;
    l = l - 3;
     
    // add the series
    gSum = gSum + gvalue;
    }
     
    // if sum of series gSum has minimum 4
    // digits in it, then again recursive
    // call divisibleby37 function
    if (gSum >= 1000)
        return (divisibleby37(String.valueOf(gSum)));
    else
        return (gSum % 37 == 0) ? 1 : 0;
 
}
 
// Driver Code
public static void main(String[] args)
{
    String s="8955795758";
     
    if (divisibleby37(s) == 1)
    System.out.println("True");
    else
    System.out.println("False");
}
}
 
// This code is contributed by mits


Python3




# Python code for checking divisibility by 37
# function divisible37 which returns True if
# number is divisible by 37 otherwise False
def divisibleby37(n):
    l = len(n)
    if (n == 0):
        return True
   
    # Append required 0's at the beginning
    if (l%3 == 1):
        n = "00"+ n
        l += 2
    elif (l%3 == 2):
        n = "0"+ n
        l += 1
 
    gSum = 0
    while (l != 0):
 
        # group saves 3-digit group
        group = int(n[l-3:l])
        l = l-3
 
        # add the series
        gSum = gSum + group
 
    # if sum of series gSum has minimum 4
    # digits in it, then again recursive
    # call divisibleby37 function
    if (gSum >= 1000):
        return(divisibleby37(str(gSum)))
    else:
        return (gSum%37==0)
 
# Driver method to test the above function
print(divisibleby37("8955795758"))


C#




// C# program for checking
// divisibility by 37
using System;
 
class GFG
{
// function divisible37 which
// returns True if number is
// divisible by 37 otherwise False
static int divisibleby37(string n)
{
    int l = n.Length;
    if (n == "0")
        return 0;
 
    // Append required 0's
    // at the beginning
    if (l % 3 == 1)
    {
        n = "00"+ n;
        l += 2;
    }
    else if (l % 3 == 2)
    {
        n = "0"+ n;
        l += 1;
    }
     
    int gSum = 0;
    while (l != 0)
    {
 
    // group saves 3-digit group
    int gvalue;
    if(l == 2)
        gvalue = ((int)n[(l - 2)] - 48) * 100 +
                 ((int)n[(l - 1)] - 48) * 10;
    else if(l == 1)
        gvalue = ((int)n[(l - 1)] - 48) * 100;
    else
        gvalue = ((int)n[(l - 3)] - 48) * 100 +
                 ((int)n[(l - 2)] - 48) * 10 +
                 ((int)n[(l - 1)] - 48) * 1;
    l = l - 3;
     
    // add the series
    gSum = gSum + gvalue;
    }
     
    // if sum of series gSum has minimum 4
    // digits in it, then again recursive
    // call divisibleby37 function
    if (gSum >= 1000)
        return (divisibleby37(gSum.ToString()));
    else
        return (gSum % 37 == 0) ? 1 : 0;
 
}
 
// Driver Code
public static void Main()
{
    string s="8955795758";
     
    if (divisibleby37(s) == 1)
    Console.WriteLine("True");
    else
    Console.WriteLine("False");
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP program for checking
// divisibility by 37
 
// function divisible37 which
// returns True if number is
// divisible by 37 otherwise
// False
function divisibleby37($n)
{
    $l = strlen($n);
    if ($n == '0')
        return 0;
 
    // Append required 0's
    // at the beginning
    if ($l % 3 == 1)
    {
        $n = "00" . $n;
        $l += 2;
    }
    else if ($l % 3 == 2)
    {
        $n = "0" . $n;
        $l += 1;
    }
     
    $gSum = 0;
     
    while ($l != 0)
    {
 
    // group saves 3-digit group
    $group = substr($n,$l - 3, $l);
        $l = $l - 3;
    $gvalue = (ord($group[0]) - 48) * 100 +
              (ord($group[1]) - 48) * 10 +
              (ord($group[2]) - 48) * 1;
                 
    // add the series
    $gSum = $gSum + $gvalue;
    }
     
    // if sum of series gSum has
    // minimum 4 digits in it,
    // then again recursive call
    // divisibleby37 function
    if ($gSum >= 1000)
        return (divisibleby37((string)($gSum)));
    else
        return ($gSum % 37 == 0);
 
}
 
// Driver code
$s = "8955795758";
 
if (divisibleby37($s))
echo "True";
else
echo "False";
 
// This code is contributed
// by mits
?>


Javascript




<script>
// Javascript program for checking
// divisibility by 37
 
// function divisible37 which
// returns True if number is
// divisible by 37 otherwise
// False
function divisibleby37(n)
{
    let l = n.length;
    if (n == '0')
        return 0;
 
    // Append required 0's
    // at the beginning
    if (l % 3 == 1)
    {
        n = "00" + n;
        l += 2;
    }
    else if (l % 3 == 2)
    {
        n = "0" + n;
        l += 1;
    }
     
    let gSum = 0;
     
    while (l != 0)
    {
 
    // group saves 3-digit group
    let group = n.substr(l - 3, l);
        l = l - 3;
    gvalue = (group.charCodeAt(0) - 48) * 100 +
             (group.charCodeAt(1) - 48) * 10 +
             (group.charCodeAt(2) - 48) * 1;
                 
    // add the series
    gSum = gSum + gvalue;
    }
     
    // if sum of series gSum has
    // minimum 4 digits in it,
    // then again recursive call
    // divisibleby37 function
    if (gSum >= 1000)
        return (divisibleby37(`${gSum}`));
    else
        return (gSum % 37 == 0);
 
}
 
// Driver code
let s = "8955795758";
 
if (divisibleby37(s))
    document.write("True");
else
    document.write("False");
 
// This code is contributed
// by _saurabh_jaiswal.
</script>


Output

True

Time Complexity: O(n), where n is the length of the string.
Auxiliary Space: O(1)

Method: Checking given number is divisible by 37 or not by using modulo division operator “%”.

C++




// C++ code To check whether the given number is divisible
// by 37 or not
 
#include <iostream>
using namespace std;
 
int main()
{
 
    // input number
    int num = 8955;
    // checking if the given number is divisible by 37 or
    // not using modulo division operator if the output of
    // num%37 is equal to 0 then given number is divisible
    // by 37 otherwise not divisible by 37
    if (num % 37 == 0) {
        cout << " divisible";
    }
    else {
        cout << " not divisible";
    }
    return 0;
}


Java




// Java code To check whether the given number is divisible
// by 37 or not
import java.util.*;
 
class GFG
{
  public static void main(String[] args)
  {
 
    // input number
    int num = 8955;
 
    // checking if the given number is divisible by 37 or
    // not using modulo division operator if the output of
    // num%37 is equal to 0 then given number is divisible
    // by 37 otherwise not divisible by 37
    if (num % 37 == 0) {
      System.out.println(" divisible");
    }
    else {
      System.out.println(" not divisible");
    }
  }
}
 
// This code is contributed by phasing17


Python3




# Python code
# To check whether the given number is divisible by 37 or not
 
#input
n=8955795758
# the above input can also be given as n=input() -> taking input from user
# finding given number is divisible by 37 or not
if int(n)%37==0:
  print("true")
else:
  print("false")
   
  # this code is contributed by gangarajula laxmi


C#




using System;
 
public class GFG {
 
    static public void Main()
    {
 
        // input number
        long num = 8955795758;
 
    // checking if the given number is divisible by 37 or
    // not using modulo division operator if the output of
    // num%37 is equal to 0 then given number is divisible
    // by 37 otherwise not divisible by 37
        if (num % 37 == 0) {
            Console.Write("Yes");
        }
        else {
            Console.Write("No");
        }
    }
}
 
// This code is contributed by laxmigangarajula03


Javascript




<script>
        // JavaScript code for the above approach
        // To check whether the given number is divisible by 37 or not
  
        // input
        var n = 8955795758
         
        // finding given number is divisible by 37 or not
        if (n % 37 == 0)
            document.write("true")
        else
            document.write("false")
  
 // This code is contributed by laxmigangarajula03
    </script>


PHP




<?php
    $num = 8955795758;
    // checking if the given number is divisible by 37 or
    // not using modulo division operator if the output of
    // num%37 is equal to 0 then given number is divisible
    // by 37 otherwise not divisible by 37
    if ($num % 37 == 0) {
        echo "true";
    }
    else {
        echo "false";
    }
   
?>


Output

true

Time Complexity: O(1) 
Auxiliary Space: O(1)

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments