Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIMaximize subarray sum of given Array by adding X in range ...

Maximize subarray sum of given Array by adding X in range [L, R] for Q queries

Given an array arr[] of N integers and M update queries of the type (L, R, X), the task is to find the maximum subarray sum after each update query where in each query, add integer X to every element of the array arr[] in the range [L, R].

Examples:

Input: arr[] = {-1, 5, -2, 9, 3, -3, 2}, query[] = {{0, 2, -10}, {4, 5, 2}}
Output: 12 15
Explanation: Below are the steps to solve the above example:

  • The array after 1st update query becomes arr[] = {-11, -5, -12, 9, 3, -3, 2}. Hence the maximum subarray sum is 12 of the subarray arr[3… 4].
  • The array after 2nd update query becomes arr[] = {-11, -5, -12, 9, 5, -1, 2}. Hence the maximum subarray sum is 15 of the subarray arr[3… 6].

Input: arr[] = {-2, -5, 6, -2, -3, 1, 5, -6, 4, -1}, query[] = {{1, 4, 3}, {4, 5, -4}, {7, 9, 5}}
Output: 16 10 20

 

Approach: The given problem can be solved using Kadane’s Algorithm. For each query, update the array elements by traversing over all the elements of the array arr[] in the range [L, R] and add integer X to each element. After every update query, calculate the maximum subarray sum using the algorithm discussed here

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum subarray
// sum using Kadane's Algorithm
int maxSubarraySum(int arr[], int n)
{
    // Stores the maximum sum
    int maxSum = INT_MIN;
    int currSum = 0;
 
    // Loop to iterate over the array
    for (int i = 0; i <= n - 1; i++) {
        currSum += arr[i];
 
        // Update maxSum
        if (currSum > maxSum) {
            maxSum = currSum;
        }
        if (currSum < 0) {
            currSum = 0;
        }
    }
 
    // Return Answer
    return maxSum;
}
 
// Function to add integer X to all elements
// of the given array in range [L, R]
void updateArr(int* arr, int L, int R, int X)
{
    // Loop to iterate over the range
    for (int i = L; i <= R; i++) {
        arr[i] += X;
    }
}
 
// Function to find the maximum subarray sum
// after each range update query
void maxSubarraySumQuery(
    int arr[], int n,
    vector<vector<int> > query)
{
    // Loop to iterate over the queries
    for (int i = 0; i < query.size(); i++) {
 
        // Function call to update the array
        // according to the mentioned query
        updateArr(arr, query[i][0],
                  query[i][1],
                  query[i][2]);
 
        // Print the max subarray sum after
        // updating the given array
        cout << maxSubarraySum(arr, n) << " ";
    }
}
 
// Driver Code
int main()
{
 
    int arr[] = { -2, -5, 6, -2, -3,
                  1, 5, -6, 4, -1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    vector<vector<int> > query{ { 1, 4, 3 },
                                { 4, 5, -4 },
                                { 7, 9, 5 } };
 
    maxSubarraySumQuery(arr, N, query);
 
    return 0;
}


Java




// Java  program for the above approach
class GFG {
 
    // Function to find the maximum subarray
    // sum using Kadane's Algorithm
    public static int maxSubarraySum(int arr[], int n)
    {
       
        // Stores the maximum sum
        int maxSum = Integer.MIN_VALUE;
        int currSum = 0;
 
        // Loop to iterate over the array
        for (int i = 0; i <= n - 1; i++) {
            currSum += arr[i];
 
            // Update maxSum
            if (currSum > maxSum) {
                maxSum = currSum;
            }
            if (currSum < 0) {
                currSum = 0;
            }
        }
 
        // Return Answer
        return maxSum;
    }
 
    // Function to add integer X to all elements
    // of the given array in range [L, R]
    public static void updateArr(int[] arr, int L,
                                 int R, int X)
    {
       
        // Loop to iterate over the range
        for (int i = L; i <= R; i++) {
            arr[i] += X;
        }
    }
 
    // Function to find the maximum subarray sum
    // after each range update query
    public static void maxSubarraySumQuery(int arr[], int n, int[][] query)
    {
       
        // Loop to iterate over the queries
        for (int i = 0; i < query.length; i++)
        {
 
            // Function call to update the array
            // according to the mentioned query
            updateArr(arr, query[i][0],
                    query[i][1],
                    query[i][2]);
 
            // Print the max subarray sum after
            // updating the given array
            System.out.print(maxSubarraySum(arr, n) + " ");
        }
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int arr[] = { -2, -5, 6, -2, -3,
                1, 5, -6, 4, -1 };
        int N = arr.length;
        int[][] query = { { 1, 4, 3 }, { 4, 5, -4 }, { 7, 9, 5 } };
        maxSubarraySumQuery(arr, N, query);
    }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# Python Program to implement
# the above approach
 
# Function to find the maximum subarray
# sum using Kadane's Algorithm
def maxSubarraySum(arr, n):
 
    # Stores the maximum sum
    maxSum = 10 ** -9
    currSum = 0
 
    # Loop to iterate over the array
    for i in range(n):
        currSum += arr[i]
 
        # Update maxSum
        if (currSum > maxSum):
            maxSum = currSum
        if (currSum < 0):
            currSum = 0
    # Return Answer
    return maxSum
 
 
# Function to add integer X to all elements
# of the given array in range[L, R]
def updateArr(arr, L, R, X):
    # Loop to iterate over the range
    for i in range(L, R + 1):
        arr[i] += X
 
# Function to find the maximum subarray sum
# after each range update query
def maxSubarraySumQuery(arr, n, query):
   
    # Loop to iterate over the queries
    for i in range(len(query)):
 
        # Function call to update the array
        # according to the mentioned query
        updateArr(arr, query[i][0],
                  query[i][1],
                  query[i][2])
 
        # Print the max subarray sum after
        # updating the given array
        print(maxSubarraySum(arr, n), end=" ")
 
# Driver Code
arr = [-2, -5, 6, -2, -3, 1, 5, -6, 4, -1]
N = len(arr)
query = [[1, 4, 3],[4, 5, -4],[7, 9, 5]]
 
maxSubarraySumQuery(arr, N, query)
 
# This code is contributed by gfgking


C#




// C#  program for the above approach
using System;
class GFG
{
 
    // Function to find the maximum subarray
    // sum using Kadane's Algorithm
    public static int maxSubarraySum(int[] arr, int n)
    {
 
        // Stores the maximum sum
        int maxSum = int.MinValue;
        int currSum = 0;
 
        // Loop to iterate over the array
        for (int i = 0; i <= n - 1; i++)
        {
            currSum += arr[i];
 
            // Update maxSum
            if (currSum > maxSum)
            {
                maxSum = currSum;
            }
            if (currSum < 0)
            {
                currSum = 0;
            }
        }
 
        // Return Answer
        return maxSum;
    }
 
    // Function to add integer X to all elements
    // of the given array in range [L, R]
    public static void updateArr(int[] arr, int L,
                                 int R, int X)
    {
 
        // Loop to iterate over the range
        for (int i = L; i <= R; i++)
        {
            arr[i] += X;
        }
    }
 
    // Function to find the maximum subarray sum
    // after each range update query
    public static void maxSubarraySumQuery(int[] arr, int n, int[,] query)
    {
 
        // Loop to iterate over the queries
        for (int i = 0; i < query.Length; i++)
        {
 
            // Function call to update the array
            // according to the mentioned query
            updateArr(arr, query[i, 0],
                    query[i, 1],
                    query[i, 2]);
 
            // Print the max subarray sum after
            // updating the given array
            Console.Write(maxSubarraySum(arr, n) + " ");
        }
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { -2, -5, 6, -2, -3, 1, 5, -6, 4, -1 };
        int N = arr.Length;
        int[,] query = { { 1, 4, 3 }, { 4, 5, -4 }, { 7, 9, 5 } };
        maxSubarraySumQuery(arr, N, query);
    }
}
 
// This code is contributed by _saurabh_jaiswal.


Javascript




<script>
    // JavaScript Program to implement
    // the above approach
 
    // Function to find the maximum subarray
    // sum using Kadane's Algorithm
    function maxSubarraySum(arr, n)
    {
     
        // Stores the maximum sum
        let maxSum = Number.MIN_VALUE;
        let currSum = 0;
 
        // Loop to iterate over the array
        for (let i = 0; i <= n - 1; i++) {
            currSum += arr[i];
 
            // Update maxSum
            if (currSum > maxSum) {
                maxSum = currSum;
            }
            if (currSum < 0) {
                currSum = 0;
            }
        }
 
        // Return Answer
        return maxSum;
    }
 
    // Function to add integer X to all elements
    // of the given array in range [L, R]
    function updateArr(arr, L, R, X) {
        // Loop to iterate over the range
        for (let i = L; i <= R; i++) {
            arr[i] += X;
        }
    }
 
    // Function to find the maximum subarray sum
    // after each range update query
    function maxSubarraySumQuery(
        arr, n,
        query) {
        // Loop to iterate over the queries
        for (let i = 0; i < query.length; i++) {
 
            // Function call to update the array
            // according to the mentioned query
            updateArr(arr, query[i][0],
                query[i][1],
                query[i][2]);
 
            // Print the max subarray sum after
            // updating the given array
            document.write(maxSubarraySum(arr, n) + " ");
        }
    }
 
    // Driver Code
    let arr = [-2, -5, 6, -2, -3,
        1, 5, -6, 4, -1];
    let N = arr.length;
    let query = [[1, 4, 3],
    [4, 5, -4],
    [7, 9, 5]];
 
    maxSubarraySumQuery(arr, N, query);
 
// This code is contributed by Potta Lokesh
</script>


Output

16 10 20 

Time Complexity: O(N*M)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
06 Dec, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments