Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.
The tf.sparseToDense() function is used to convert a specified sparse representation into a dense Tensor. If the given indices get repeated, the final value is summed over all values for that indices.
Syntax:
tf.sparseToDense(sparseIndices, sparseValues, outputShape, defaultValue)
Parameters: This function accepts four parameters which are illustrated below:
- sparseIndices: It is a 0-D, 1-D, or 2-D Tensor of data type int32. Here sparseValues[i] get placed at sparseIndices[i], where i is the indices values.
- sparseValues: It is a 0-D or 1-D Tensor of values which corresponds to each row of sparseIndices.
- outputShape: It is the shape of the converted dense output tensor.
- defaultValue: It is the value to set for indices not specified in sparseIndices. Its default value is zero. It is an optional parameter.
Example 1:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing indices and values const indices = tf.tensor1d([4, 3, 2, 1, 0], 'int32' ); const values = tf.tensor1d([1111, 111, 11, 1, 0.1], 'float32' ); // Specifying shape for the output dense const shape = [7]; // Getting the Dense representation for the above // sparse representation tf.sparseToDense(indices, values, shape).print(); |
Output:
Tensor [0.1, 1, 11, 111, 1111, 0, 0]
Example 2:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing indices and values const indices = tf.tensor1d([1, 2, 3], 'int32' ); const values = tf.tensor1d([10, 20, 30], 'float32' ); // Getting the Dense representation for the above // sparse representation along with shape of [6] // and default value of 55 tf.sparseToDense(indices, values, [6], 55).print(); |
Output:
Tensor [55, 10, 20, 30, 55, 55]
Reference: https://js.tensorflow.org/api/latest/#sparseToDense