Given a set L = {l1, l2, ………, ln} of ‘n’ distinct lines on the Euclidean Plane. The ith line is given by an equation in the form aix + biy = ci. Find the number of triangles that can be formed using the lines in the set L. Note that no two pairs of lines intersect at the same point.
Note: This problem doesn’t mention that the lines can’t be parallel which makes the problem difficult to solve.
Examples:
Input: a[] = {1, 2, 3, 4} b[] = {2, 4, 5, 5} c[] = {5, 7, 8, 6} Output: 2 The number of triangles that can be formed are: 2 Input: a[] = {1, 2, 3, 2, 4, 1, 2, 3, 4, 5} b[] = {2, 4, 6, 3, 6, 5, 10, 15, 20, 25} c[] = {3, 5, 11, 10, 9, 17, 13, 11, 7, 3} Output: 30 The number of triangles that can be formed are: 30
Naive Algorithm
The naive algorithm can be described as:
- Pick up 3 arbitrary lines from the set L.
- Now check if a triangle can be formed using the selected 3 lines. This can be done easily by checking that none of them is pairwise parallel.
- Increment the counter if the triangle can be formed.
Time Complexity: There are nC3 triplets of lines. For each triplet, we have to do 3 comparisons to check that any 2 lines are not parallel which means the check can be done in O(1) time. This makes the naive algorithm O(n3).
Efficient Algorithm
This can also be achieved in O(n log n). The logic behind the efficient algorithm is described below.
We divide the set L in various subsets. The formation of subsets is based on slopes i.e. all the lines in a particular subset have the same slope i.e. they are parallel to each other.
Let us consider three sets (say A, B and C). For a particular set (say A) the lines belonging to this are all parallel to each other. If we have A, B, and C, we can pick one line from each set to get a triangle because none of these lines will be parallel. By making the subsets we have ensured that no two lines which are parallel are being picked together.
Now if we have only these 3 subsets,
Number of triangles = (Number of ways to pick a line from A) * (Number of ways to pick a line from B) * (Number of ways to pick a line from C) = m1*m2*m3 Here m1 is count of elements with first slope (in Set A) Here m2 is count of elements with first slope (in Set B) Here m3 is count of elements with first slope (in Set C)
Similarly, if we have 4 subsets, we can extend this logic to get,
Number of triangles = m1*m2*m3 + m1*m2*m4 + m1*m3*m4 + m2*m3*m4
For number of subsets greater than 3, If we have ‘k’ subsets, our task is to find the sum of number of elements of the subset taken 3 at a time. This can be done by maintaining a count array. We make a count array where counti denotes the count of the ith subset of parallel lines.
We one by one compute following values. sum1 = m1 + m2 + m3 ..... sum2 = m1*m2 + m1*m3 + ... + m2*m3 + m2*m4 + ... sum3 = m1*m2*m3 + m1*m2*m4 + ...... m2*m3*m4 + .... sum3 gives our final answer
C++
// C++ program to find the number of // triangles that can be formed // using a set of lines in Euclidean // Plane #include <bits/stdc++.h> using namespace std; #define EPSILON numeric_limits<double>::epsilon() // double variables can't be checked precisely // using '==' this function returns true if // the double variables are equal bool compareDoubles( double A, double B) { double diff = A-B; return (diff<EPSILON) && (-diff<EPSILON); } // This function returns the number of triangles // for a given set of lines int numberOfTringles( int a[], int b[], int c[], int n) { //slope array stores the slope of lines double slope[n]; for ( int i=0; i<n; i++) slope[i] = (a[i]*1.0)/b[i]; // slope array is sorted so that all lines // with same slope come together sort(slope, slope+n); // After sorting slopes, count different // slopes. k is index in count[]. int count[n], k = 0; int this_count = 1; // Count of current slope for ( int i=1; i<n; i++) { if (compareDoubles(slope[i], slope[i-1])) this_count++; else { count[k++] = this_count; this_count = 1; } } count[k++] = this_count; // calculating sum1 (Sum of all slopes) // sum1 = m1 + m2 + ... int sum1 = 0; for ( int i=0; i<k; i++) sum1 += count[i]; // calculating sum2. sum2 = m1*m2 + m2*m3 + ... int sum2 = 0; int temp[n]; // Needed for sum3 for ( int i=0; i<k; i++) { temp[i] = count[i]*(sum1-count[i]); sum2 += temp[i]; } sum2 /= 2; // calculating sum3 which gives the final answer // m1 * m2 * m3 + m2 * m3 * m4 + ... int sum3 = 0; for ( int i=0; i<k; i++) sum3 += count[i]*(sum2-temp[i]); sum3 /= 3; return sum3; } // Driver code int main() { // lines are stored as arrays of a, b // and c for 'ax+by=c' int a[] = {1, 2, 3, 4}; int b[] = {2, 4, 5, 5}; int c[] = {5, 7, 8, 6}; // n is the number of lines int n = sizeof (a)/ sizeof (a[0]); cout << "The number of triangles that" " can be formed are: " << numberOfTringles(a, b, c, n); return 0; } |
Java
// Java program to find the number of // triangles that can be formed // using a set of lines in Euclidean // Plane import java.util.*; class GFG{ static double EPSILON = 1 .0842e- 19 ; // Double variables can't be checked precisely // using '==' this function returns true if // the double variables are equal static boolean compareDoubles( double A, double B) { double diff = A - B; return (diff < EPSILON) && (-diff < EPSILON); } // This function returns the number of // triangles for a given set of lines static int numberOfTringles( int []a, int []b, int []c, int n) { // Slope array stores the slope of lines Vector<Double> slope = new Vector<>(); for ( int i = 0 ; i < n; i++) slope.add(( double )(a[i] * 1.0 ) / b[i]); // Slope array is sorted so that all lines // with same slope come together Collections.sort(slope); // After sorting slopes, count different // slopes. k is index in count[]. int []count = new int [n]; int k = 0 ; // Count of current slope int this_count = 1 ; for ( int i = 1 ; i < n; i++) { if (compareDoubles(( double )slope.get(i), ( double )slope.get(i - 1 ))) this_count++; else { count[k++] = this_count; this_count = 1 ; } } count[k++] = this_count; // Calculating sum1 (Sum of all slopes) // sum1 = m1 + m2 + ... int sum1 = 0 ; for ( int i = 0 ; i < k; i++) sum1 += count[i]; // Calculating sum2. sum2 = m1*m2 + m2*m3 + ... int sum2 = 0 ; // Needed for sum3 int temp[] = new int [n]; for ( int i = 0 ; i < k; i++) { temp[i] = count[i] * (sum1 - count[i]); sum2 += temp[i]; } sum2 /= 2 ; // Calculating sum3 which gives the // final answer // m1 * m2 * m3 + m2 * m3 * m4 + ... int sum3 = 0 ; for ( int i = 0 ; i < k; i++) sum3 += count[i] * (sum2 - temp[i]); sum3 /= 3 ; return sum3; } // Driver code public static void main(String[] args) { // Lines are stored as arrays of a, b // and c for 'ax+by=c' int a[] = { 1 , 2 , 3 , 4 }; int b[] = { 2 , 4 , 5 , 5 }; int c[] = { 5 , 7 , 8 , 6 }; // n is the number of lines int n = a.length; System.out.println( "The number of triangles " + "that can be formed are: " + numberOfTringles(a, b, c, n)); } } // This code is contributed by Stream_Cipher |
Python3
# Python program to find the number of # triangles that can be formed # using a set of lines in Euclidean # Plane import math EPSILON = 1.0842e - 19 # double variables can't be checked precisely # using '==' this function returns true if # the double variables are equal def compareDoubles(A, B): diff = A - B return (diff < EPSILON) and ( - diff < EPSILON) # This function returns the number of triangles # for a given set of lines def numberOfTringles(a, b, c, n): # slope array stores the slope of lines slope = [] for i in range ( 0 , n): slope.append((a[i] * 1.0 ) / b[i]) # slope array is sorted so that all lines # with same slope come together slope.sort() # After sorting slopes, count different # slopes. k is index in count[]. k = 0 count = [] this_count = 1 # Count of current slope for i in range ( 1 , n): if compareDoubles(slope[i], slope[i - 1 ]): this_count = this_count + 1 else : count.append(this_count) k = k + 1 this_count = 1 count.append(this_count) k = k + 1 # calculating sum1 (Sum of all slopes) # sum1 = m1 + m2 + ... sum1 = 0 for i in range ( 0 , k): sum1 + = count[i] # calculating sum2. sum2 = m1*m2 + m2*m3 + ... sum2 = 0 temp = [] # Needed for sum3 for i in range ( 0 , k): temp.append(count[i] * (sum1 - count[i])) sum2 + = temp[i] sum2 = math.floor(sum2 / 2 ) # calculating sum3 which gives the final answer # m1 * m2 * m3 + m2 * m3 * m4 + ... sum3 = 0 for i in range ( 0 , k): sum3 + = count[i] * (sum2 - temp[i]) sum3 = math.floor(sum3 / 3 ) return sum3 # Driver Code # lines are stored as arrays of a, b # and c for 'ax+by=c' a = [ 1 , 2 , 3 , 4 ] b = [ 2 , 4 , 5 , 5 ] c = [ 5 , 7 , 8 , 6 ] # n is the number of lines n = len (a) print ( "The number of triangles that can be formed are: " , numberOfTringles(a, b, c, n)) # The code is contributed by Gautam goel (gautamgoel962) |
C#
// C# program to find the number of // triangles that can be formed // using a set of lines in Euclidean // Plane using System.Collections.Generic; using System; class GFG{ static double EPSILON = 1.0842e-19; // Double variables can't be checked precisely // using '==' this function returns true if // the double variables are equal static bool compareDoubles( double A, double B) { double diff = A - B; return (diff < EPSILON) && (-diff < EPSILON); } // This function returns the number of // triangles for a given set of lines static int numberOfTringles( int []a, int []b, int []c, int n) { // Slope array stores the slope of lines List< double > slope = new List< double >(); for ( int i = 0; i < n; i++) slope.Add(( double )(a[i] * 1.0) / b[i]); // Slope array is sorted so that all lines // with same slope come together slope.Sort(); // After sorting slopes, count different // slopes. k is index in count[]. int []count = new int [n]; int k = 0; // Count of current slope int this_count = 1; for ( int i = 1; i < n; i++) { if (compareDoubles(( double )slope[i], ( double )slope[i - 1])) this_count++; else { count[k++] = this_count; this_count = 1; } } count[k++] = this_count; // Calculating sum1 (Sum of all slopes) // sum1 = m1 + m2 + ... int sum1 = 0; for ( int i = 0; i < k; i++) sum1 += count[i]; // Calculating sum2. sum2 = m1*m2 + m2*m3 + ... int sum2 = 0; // Needed for sum3 int []temp = new int [n]; for ( int i = 0; i < k; i++) { temp[i] = count[i] * (sum1 - count[i]); sum2 += temp[i]; } sum2 /= 2; // Calculating sum3 which gives // the final answer // m1 * m2 * m3 + m2 * m3 * m4 + ... int sum3 = 0; for ( int i = 0; i < k; i++) sum3 += count[i] * (sum2 - temp[i]); sum3 /= 3; return sum3; } // Driver code public static void Main() { // lines are stored as arrays of a, b // and c for 'ax+by=c' int []a = { 1, 2, 3, 4 }; int []b = { 2, 4, 5, 5 }; int []c = { 5, 7, 8, 6 }; // n is the number of lines int n = a.Length; Console.WriteLine( "The number of triangles " + "that can be formed are: " + numberOfTringles(a, b, c, n)); } } // This code is contributed by Stream_Cipher |
Javascript
<script> // JavaScript program to find the number of // triangles that can be formed // using a set of lines in Euclidean // Plane const EPSILON = 1.0842e-19; // Double variables can't be checked precisely // using '==' this function returns true if // the double variables are equal function compareDoubles(A, B) { var diff = A - B; return diff < EPSILON && -diff < EPSILON; } // This function returns the number of // triangles for a given set of lines function numberOfTringles(a, b, c, n) { // Slope array stores the slope of lines var slope = []; for ( var i = 0; i < n; i++) slope.push(parseFloat(a[i] * 1.0) / b[i]); // Slope array is sorted so that all lines // with same slope come together slope.sort(); // After sorting slopes, count different // slopes. k is index in count[]. var count = new Array(n).fill(0); var k = 0; // Count of current slope var this_count = 1; for ( var i = 1; i < n; i++) { if (compareDoubles(parseFloat(slope[i]), parseFloat(slope[i - 1]))) this_count++; else { count[k++] = this_count; this_count = 1; } } count[k++] = this_count; // Calculating sum1 (Sum of all slopes) // sum1 = m1 + m2 + ... var sum1 = 0; for ( var i = 0; i < k; i++) sum1 += count[i]; // Calculating sum2. sum2 = m1*m2 + m2*m3 + ... var sum2 = 0; // Needed for sum3 var temp = new Array(n).fill(0); for ( var i = 0; i < k; i++) { temp[i] = count[i] * (sum1 - count[i]); sum2 += temp[i]; } sum2 /= 2; // Calculating sum3 which gives // the final answer // m1 * m2 * m3 + m2 * m3 * m4 + ... var sum3 = 0; for ( var i = 0; i < k; i++) sum3 += count[i] * (sum2 - temp[i]); sum3 /= 3; return sum3; } // Driver code // lines are stored as arrays of a, b // and c for 'ax+by=c' var a = [1, 2, 3, 4]; var b = [2, 4, 5, 5]; var c = [5, 7, 8, 6]; // n is the number of lines var n = a.length; document.write( "The number of triangles " + "that can be formed are: " + numberOfTringles(a, b, c, n) ); // This code is contributed by rdtank. </script> |
Output:
The number of triangles that can be formed are: 2
Time Complexity: All the loops in the code are O(n). The time complexity in this implementation is thus driven by the sort function used to sort the slope array. This makes the algorithm O(nlogn).
Auxiliary Space: O(n)
This article is contributed by Aarti_Rathi and Aanya Jindal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!