Given an array that contains both positive and negative integers, find the product of the maximum product subarray.
Examples:
Input: arr[] = {6, -3, -10, 0, 2}
Output: 180 // The subarray is {6, -3, -10}Input: arr[] = {-1, -3, -10, 0, 60}
Output: 60 // The subarray is {60}
Naive Approach: To solve the problem follow the below idea:
The idea is to traverse over every contiguous subarray, find the product of each of these subarrays and return the maximum product from these results.
Follow the below steps to solve the problem:
- Run a nested for loop to generate every subarray
- Calculate the product of elements in the current subarray
- Return the maximum of these products calculated from the subarrays
Below is the implementation of the above approach:
C++
// C++ program to find Maximum Product Subarray #include <bits/stdc++.h> using namespace std; /* Returns the product of max product subarray.*/ int maxSubarrayProduct( int arr[], int n) { // Initializing result int result = arr[0]; for ( int i = 0; i < n; i++) { int mul = arr[i]; // traversing in current subarray for ( int j = i + 1; j < n; j++) { // updating result every time // to keep an eye over the maximum product result = max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = max(result, mul); } return result; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Sub array product is " << maxSubarrayProduct(arr, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C program to find Maximum Product Subarray #include <stdio.h> // Find maximum between two numbers. int max( int num1, int num2) { return (num1 > num2) ? num1 : num2; } /* Returns the product of max product subarray.*/ int maxSubarrayProduct( int arr[], int n) { // Initializing result int result = arr[0]; for ( int i = 0; i < n; i++) { int mul = arr[i]; // traversing in current subarray for ( int j = i + 1; j < n; j++) { // updating result every time // to keep an eye over the maximum product result = max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = max(result, mul); } return result; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Maximum Sub array product is %d " , maxSubarrayProduct(arr, n)); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java program to find maximum product subarray import java.io.*; class GFG { /* Returns the product of max product subarray.*/ static int maxSubarrayProduct( int arr[]) { // Initializing result int result = arr[ 0 ]; int n = arr.length; for ( int i = 0 ; i < n; i++) { int mul = arr[i]; // traversing in current subarray for ( int j = i + 1 ; j < n; j++) { // updating result every time to keep an eye // over the maximum product result = Math.max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = Math.max(result, mul); } return result; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; System.out.println( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python3 program to find Maximum Product Subarray # Returns the product of max product subarray. def maxSubarrayProduct(arr, n): # Initializing result result = arr[ 0 ] for i in range (n): mul = arr[i] # traversing in current subarray for j in range (i + 1 , n): # updating result every time # to keep an eye over the maximum product result = max (result, mul) mul * = arr[j] # updating the result for (n-1)th index. result = max (result, mul) return result # Driver code arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] n = len (arr) print ( "Maximum Sub array product is" , maxSubarrayProduct(arr, n)) # This code is contributed by divyeshrabadiya07 |
C#
// C# program to find maximum product subarray using System; class GFG { // Returns the product of max product subarray static int maxSubarrayProduct( int [] arr) { // Initializing result int result = arr[0]; int n = arr.Length; for ( int i = 0; i < n; i++) { int mul = arr[i]; // Traversing in current subarray for ( int j = i + 1; j < n; j++) { // Updating result every time // to keep an eye over the // maximum product result = Math.Max(result, mul); mul *= arr[j]; } // Updating the result for (n-1)th index result = Math.Max(result, mul); } return result; } // Driver Code public static void Main(String[] args) { int [] arr = { 1, -2, -3, 0, 7, -8, -2 }; Console.Write( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // Javascript program to find Maximum Product Subarray /* Returns the product of max product subarray.*/ function maxSubarrayProduct(arr, n) { // Initializing result let result = arr[0]; for (let i = 0; i < n; i++) { let mul = arr[i]; // traversing in current subarray for (let j = i + 1; j < n; j++) { // updating result every time // to keep an eye over the maximum product result = Math.max(result, mul); mul *= arr[j]; } // updating the result for (n-1)th index. result = Math.max(result, mul); } return result; } // Driver code let arr = [ 1, -2, -3, 0, 7, -8, -2 ]; let n = arr.length; document.write( "Maximum Sub array product is " + maxSubarrayProduct(arr, n)); // This code is contributed by Mayank Tyagi </script> |
Maximum Sub array product is 112
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: To solve the problem follow the below idea:
The following solution assumes that the given input array always has a positive output. The solution works for all cases mentioned above. It doesn’t work for arrays like {0, 0, -20, 0}, {0, 0, 0}.. etc. The solution can be easily modified to handle this case. It is similar to the Largest Sum Contiguous Subarray problem.
The only thing to note here is, the maximum product can also be obtained by the minimum (negative) product ending with the previous element multiplied by this element. For example, in array {12, 2, -3, -5, -6, -2}, when we are at element -2, the maximum product is the multiplication of, the minimum product ending with -6 and -2
Note: if all elements of the array are negative then the maximum product with the above algorithm is 1. so, if the maximum product is 1, then we have to return the maximum element of an array
Follow the below steps to solve the problem:
- Declare two integers max_ending _here and min_ending_here equal to one and max_so_far equal to zero
- Run a for loop for i [0, N]
- If the current element is greater than zero
- Set max_ending_here equal to max_ending_here * arr[i]
- Set min_ending_here equal to the minimum of min_ending_here * arr[i] and 1
- Set a boolean flag equal to one
- Else if the current element is equal to zero
- Set both max_ending_here and min_ending_here equal to one
- Else
- Set max_ending here equal to the maximum of min_ending_here * arr[i] and 1
- Set min_ending_here equal to max_ending_here * arr[i]
- If max_ending_here is greater than max_so_far then update max_so_far
- If the flag is equal to zero then return zero
- If the max_so_far is equal to one i.e all array elements are negative the return maximum element in the input array
- Return max_so_far
Below is the implementation of the above approach:
C++
// C++ program to find Maximum Product Subarray #include <bits/stdc++.h> using namespace std; /* Returns the product of max product subarray. */ int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = 1; // min negative product ending // at the current position int min_ending_here = 1; // Initialize overall max product int max_so_far = 0; int flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is always greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next max_ending_here will always be prev. min_ending_here * arr[i] ,next min_ending_here will be 1 if prev max_ending_here is 1, otherwise next min_ending_here will be prev max_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; /* if all the array elements are negative */ if (max_so_far == 1) { max_so_far = arr[0]; for ( int i = 1; i < n; i++) max_so_far = max(max_so_far, arr[i]); } return max_so_far; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Sub array product is " << maxSubarrayProduct(arr, n); return 0; } // This is code is contributed by rathbhupendra |
C
// C program to find Maximum Product Subarray #include <stdio.h> // Utility functions to get minimum of two integers int min( int x, int y) { return x < y ? x : y; } // Utility functions to get maximum of two integers int max( int x, int y) { return x > y ? x : y; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = 1; // min negative product ending // at the current position int min_ending_here = 1; // Initialize overall max product int max_so_far = 0; int flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; return max_so_far; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Maximum Sub array product is %d" , maxSubarrayProduct(arr, n)); return 0; } |
Java
// Java program to find maximum product subarray import java.io.*; class ProductSubarray { // Utility functions to get // minimum of two integers static int min( int x, int y) { return x < y ? x : y; } // Utility functions to get // maximum of two integers static int max( int x, int y) { return x > y ? x : y; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ static int maxSubarrayProduct( int arr[]) { int n = arr.length; // max positive product // ending at the current // position int max_ending_here = 1 ; // min negative product // ending at the current // position int min_ending_here = 1 ; // Initialize overall max product int max_so_far = 0 ; int flag = 0 ; /* Traverse through the array. Following values are maintained after the ith iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0 ; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0 ) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1 ); flag = 1 ; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending _here 0 Assumption: Output is always greater than or equal to 1. */ else if (arr[i] == 0 ) { max_ending_here = 1 ; min_ending_here = 1 ; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1 ); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0 ) return 0 ; return max_so_far; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; System.out.println( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } /*This code is contributed by Devesh Agrawal*/ |
Python3
# Python program to find maximum product subarray # Returns the product of max product subarray. # Assumes that the given array always has a subarray # with product more than 1 def maxsubarrayproduct(arr): n = len (arr) # max positive product ending at the current position max_ending_here = 1 # min positive product ending at the current position min_ending_here = 1 # Initialize maximum so far max_so_far = 0 flag = 0 # Traverse throughout the array. Following values # are maintained after the ith iteration: # max_ending_here is always 1 or some positive product # ending with arr[i] # min_ending_here is always 1 or some negative product # ending with arr[i] for i in range ( 0 , n): # If this element is positive, update max_ending_here. # Update min_ending_here only if min_ending_here is # negative if arr[i] > 0 : max_ending_here = max_ending_here * arr[i] min_ending_here = min (min_ending_here * arr[i], 1 ) flag = 1 # If this element is 0, then the maximum product cannot # end here, make both max_ending_here and min_ending_here 0 # Assumption: Output is alway greater than or equal to 1. elif arr[i] = = 0 : max_ending_here = 1 min_ending_here = 1 # If element is negative. This is tricky # max_ending_here can either be 1 or positive. # min_ending_here can either be 1 or negative. # next min_ending_here will always be prev. # max_ending_here * arr[i] # next max_ending_here will be 1 if prev # min_ending_here is 1, otherwise # next max_ending_here will be prev min_ending_here * arr[i] else : temp = max_ending_here max_ending_here = max (min_ending_here * arr[i], 1 ) min_ending_here = temp * arr[i] if (max_so_far < max_ending_here): max_so_far = max_ending_here if flag = = 0 and max_so_far = = 0 : return 0 return max_so_far # Driver function to test above function arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] print ( "Maximum product subarray is" , maxsubarrayproduct(arr)) # This code is contributed by Devesh Agrawal |
C#
// C# program to find maximum product subarray using System; class GFG { // Utility functions to get minimum of two integers static int min( int x, int y) { return x < y ? x : y; } // Utility functions to get maximum of two integers static int max( int x, int y) { return x > y ? x : y; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ static int maxSubarrayProduct( int [] arr) { int n = arr.Length; // max positive product ending at the current // position int max_ending_here = 1; // min negative product ending at the current // position int min_ending_here = 1; // Initialize overall max product int max_so_far = 0; int flag = 0; /* Traverse through the array. Following values are maintained after the ith iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( int i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { int temp = max_ending_here; max_ending_here = max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; } // Driver Code public static void Main() { int [] arr = { 1, -2, -3, 0, 7, -8, -2 }; Console.WriteLine( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } /*This code is contributed by vt_m*/ |
Javascript
<script> // JavaScript program to find // Maximum Product Subarray /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ function maxSubarrayProduct(arr, n) { // max positive product // ending at the current position let max_ending_here = 1; // min negative product ending // at the current position let min_ending_here = 1; // Initialize overall max product let max_so_far = 0; let flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for (let i = 0; i < n; i++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if (arr[i] > 0) { max_ending_here = max_ending_here * arr[i]; min_ending_here = Math.min(min_ending_here * arr[i], 1); flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is always greater than or equal to 1. */ else if (arr[i] == 0) { max_ending_here = 1; min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next max_ending_here will always be prev. min_ending_here * arr[i] ,next min_ending_here will be 1 if prev max_ending_here is 1, otherwise next min_ending_here will be prev max_ending_here * arr[i] */ else { let temp = max_ending_here; max_ending_here = Math.max(min_ending_here * arr[i], 1); min_ending_here = temp * arr[i]; } // update max_so_far, if needed if (max_so_far < max_ending_here) max_so_far = max_ending_here; } if (flag == 0 && max_so_far == 0) return 0; return max_so_far; } // Driver program let arr = [ 1, -2, -3, 0, 7, -8, -2 ]; let n = arr.length; document.write( "Maximum Sub array product is " + maxSubarrayProduct(arr,n)); </script> |
PHP
<?php // php program to find Maximum Product // Subarray // Utility functions to get minimum of // two integers function minn ( $x , $y ) { return $x < $y ? $x : $y ; } // Utility functions to get maximum of // two integers function maxx ( $x , $y ) { return $x > $y ? $x : $y ; } /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ function maxSubarrayProduct( $arr , $n ) { // max positive product ending at // the current position $max_ending_here = 1; // min negative product ending at // the current position $min_ending_here = 1; // Initialize overall max product $max_so_far = 0; $flag = 0; /* Traverse through the array. Following values are maintained after the i'th iteration: max_ending_here is always 1 or some positive product ending with arr[i] min_ending_here is always 1 or some negative product ending with arr[i] */ for ( $i = 0; $i < $n ; $i ++) { /* If this element is positive, update max_ending_here. Update min_ending_here only if min_ending_here is negative */ if ( $arr [ $i ] > 0) { $max_ending_here = $max_ending_here * $arr [ $i ]; $min_ending_here = min ( $min_ending_here * $arr [ $i ], 1); $flag = 1; } /* If this element is 0, then the maximum product cannot end here, make both max_ending_here and min_ending_here 0 Assumption: Output is alway greater than or equal to 1. */ else if ( $arr [ $i ] == 0) { $max_ending_here = 1; $min_ending_here = 1; } /* If element is negative. This is tricky max_ending_here can either be 1 or positive. min_ending_here can either be 1 or negative. next min_ending_here will always be prev. max_ending_here * arr[i] next max_ending_here will be 1 if prev min_ending_here is 1, otherwise next max_ending_here will be prev min_ending_here * arr[i] */ else { $temp = $max_ending_here ; $max_ending_here = max ( $min_ending_here * $arr [ $i ], 1); $min_ending_here = $temp * $arr [ $i ]; } // update max_so_far, if needed if ( $max_so_far < $max_ending_here ) $max_so_far = $max_ending_here ; } if ( $flag ==0 && $max_so_far ==0) return 0; return $max_so_far ; } // Driver Program to test above function $arr = array (1, -2, -3, 0, 7, -8, -2); $n = 7; echo ( "Maximum Sub array product is " ); echo (maxSubarrayProduct( $arr , $n )); // This code is contributed by nitin mittal ?> |
Maximum Sub array product is 112
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: To solve the problem follow the below idea:
The above solution assumes there is always a positive outcome for the given array which does not work for cases where the array contains only non-positive elements like {0, 0, -20, 0}, {0, 0, 0}.. etc. The modified solution is also similar to the Largest Sum Contiguous Subarray problem which uses Kadane’s algorithm.
Follow the below steps to solve the problem:
- Here we use 3 variables called max_so_far, max_ending_here & min_ending_here
- For every index, the maximum number ending at that index will be the maximum(arr[i], max_ending_here * arr[i], min_ending_here[i]*arr[i])
- Similarly, the minimum number ending here will be the minimum of these 3
- Thus we get the final value for the maximum product subarray
Below is the implementation of the above approach:
C++
// C++ program to find Maximum Product Subarray #include <bits/stdc++.h> using namespace std; /* Returns the product of max product subarray. */ int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = arr[0]; // min negative product ending // at the current position int min_ending_here = arr[0]; // Initialize overall max product int max_so_far = arr[0]; /* Traverse through the array. the maximum product subarray ending at an index will be the maximum of the element itself, the product of element and max product ending previously and the min product ending previously. */ for ( int i = 1; i < n; i++) { int temp = max({ arr[i], arr[i] * max_ending_here, arr[i] * min_ending_here }); min_ending_here = min({ arr[i], arr[i] * max_ending_here, arr[i] * min_ending_here }); max_ending_here = temp; max_so_far = max(max_so_far, max_ending_here); } return max_so_far; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Sub array product is " << maxSubarrayProduct(arr, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C program to find Maximum Product Subarray #include <stdio.h> // Find maximum between two numbers. int max( int num1, int num2) { return (num1 > num2) ? num1 : num2; } // Find minimum between two numbers. int min( int num1, int num2) { return (num1 > num2) ? num2 : num1; } /* Returns the product of max product subarray. */ int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = arr[0]; // min negative product ending // at the current position int min_ending_here = arr[0]; // Initialize overall max product int max_so_far = arr[0]; /* Traverse through the array. the maximum product subarray ending at an index will be the maximum of the element itself, the product of element and max product ending previously and the min product ending previously. */ for ( int i = 1; i < n; i++) { int temp = max(max(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); min_ending_here = min(min(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); max_ending_here = temp; max_so_far = max(max_so_far, max_ending_here); } return max_so_far; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Maximum Sub array product is %d" , maxSubarrayProduct(arr, n)); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { // Java program to find Maximum Product Subarray // Returns the product // of max product subarray. static int maxSubarrayProduct( int arr[], int n) { // max positive product // ending at the current position int max_ending_here = arr[ 0 ]; // min negative product ending // at the current position int min_ending_here = arr[ 0 ]; // Initialize overall max product int max_so_far = arr[ 0 ]; // /* Traverse through the array. // the maximum product subarray ending at an index // will be the maximum of the element itself, // the product of element and max product ending // previously and the min product ending previously. // */ for ( int i = 1 ; i < n; i++) { int temp = Math.max( Math.max(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); min_ending_here = Math.min( Math.min(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); max_ending_here = temp; max_so_far = Math.max(max_so_far, max_ending_here); } return max_so_far; } // Driver code public static void main(String args[]) { int [] arr = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; int n = arr.length; System.out.printf( "Maximum Sub array product is %d" , maxSubarrayProduct(arr, n)); } } // This code is contributed by shinjanpatra |
Python3
# Python3 program to find Maximum Product Subarray # Returns the product # of max product subarray. def maxSubarrayProduct(arr, n): # max positive product # ending at the current position max_ending_here = arr[ 0 ] # min negative product ending # at the current position min_ending_here = arr[ 0 ] # Initialize overall max product max_so_far = arr[ 0 ] # /* Traverse through the array. # the maximum product subarray ending at an index # will be the maximum of the element itself, # the product of element and max product ending previously # and the min product ending previously. */ for i in range ( 1 , n): temp = max ( max (arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here) min_ending_here = min ( min (arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here) max_ending_here = temp max_so_far = max (max_so_far, max_ending_here) return max_so_far # Driver code arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] n = len (arr) print (f "Maximum Sub array product is {maxSubarrayProduct(arr, n)}" ) # This code is contributed by shinjanpatra |
C#
// C# program to find maximum product subarray using System; class GFG { /* Returns the product of max product subarray. Assumes that the given array always has a subarray with product more than 1 */ static int maxSubarrayProduct( int [] arr) { // max positive product // ending at the current position int max_ending_here = arr[0]; // min negative product ending // at the current position int min_ending_here = arr[0]; // Initialize overall max product int max_so_far = arr[0]; /* Traverse through the array. the maximum product subarray ending at an index will be the maximum of the element itself, the product of element and max product ending previously and the min product ending previously. */ for ( int i = 1; i < arr.Length; i++) { int temp = Math.Max( Math.Max(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); min_ending_here = Math.Min( Math.Min(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); max_ending_here = temp; max_so_far = Math.Max(max_so_far, max_ending_here); } return max_so_far; } // Driver Code public static void Main() { int [] arr = { 1, -2, -3, 0, 7, -8, -2 }; Console.WriteLine( "Maximum Sub array product is " + maxSubarrayProduct(arr)); } } // This code is contributed by CodeWithMini |
Javascript
<script> // JavaScript program to find Maximum Product Subarray /* Returns the product of max product subarray. */ function maxSubarrayProduct(arr, n) { // max positive product // ending at the current position let max_ending_here = arr[0]; // min negative product ending // at the current position let min_ending_here = arr[0]; // Initialize overall max product let max_so_far = arr[0]; /* Traverse through the array. the maximum product subarray ending at an index will be the maximum of the element itself, the product of element and max product ending previously and the min product ending previously. */ for (let i = 1; i < n; i++) { let temp = Math.max(Math.max(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); min_ending_here = Math.min(Math.min(arr[i], arr[i] * max_ending_here), arr[i] * min_ending_here); max_ending_here = temp; max_so_far = Math.max(max_so_far, max_ending_here); } return max_so_far; } // Driver code let arr = [ 1, -2, -3, 0, 7, -8, -2 ] let n = arr.length document.write( "Maximum Sub array product is " +maxSubarrayProduct(arr, n)); // This code is contributed by shinjanpatra </script> |
Maximum Sub array product is 112
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: Using traversal from starting and end of an array
We will follow a simple approach that is to traverse and multiply elements and if our value is greater than the previously stored value then store this value in place of the previously stored value. If we encounter “0” then make products of all elements till now equal to 1 because from the next element, we will start a new subarray.
But what can be the problem with that?
Problem will occur when our array will contain odd no. of negative elements. In that case, we have to reject anyone negative element so that we can even no. of negative elements and their product can be positive. Now since we are considering subarray so we can’t simply reject any one negative element. We have to either reject the first negative element or the last negative element.
But if we will traverse from starting then only the last negative element can be rejected and if we traverse from the last then the first negative element can be rejected. So we will traverse from both the end and from both the traversal we will take answer from that traversal only which will give maximum product subarray.
So actually we will reject that negative element whose rejection will give us the maximum product’s subarray.
Code-
C++
// C++ program to find Maximum Product Subarray #include <bits/stdc++.h> using namespace std; /* Returns the product of max product subarray. */ long long int maxSubarrayProduct( int arr[], int n) { long long ans=INT_MIN; long long product=1; for ( int i=0;i<n;i++){ product*=arr[i]; ans=max(ans,product); if (arr[i]==0){product=1;} } product=1; for ( int i=n-1;i>=0;i--){ product*=arr[i]; ans=max(ans,product); if (arr[i]==0){product=1;} } return ans; } // Driver code int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Sub array product is " << maxSubarrayProduct(arr, n); return 0; } |
Java
// Java program to find Maximum Product Subarray import java.util.*; public class Main { /* Returns the product of max product subarray. */ public static long maxSubarrayProduct( int [] arr, int n) { long ans = Integer.MIN_VALUE; long product = 1 ; // Traverse the array from left to right for ( int i = 0 ; i < n; i++) { product *= arr[i]; ans = Math.max(ans, product); if (arr[i] == 0 ) { product = 1 ; } } product = 1 ; // Traverse the array from right to left for ( int i = n - 1 ; i >= 0 ; i--) { product *= arr[i]; ans = Math.max(ans, product); if (arr[i] == 0 ) { product = 1 ; } } return ans; } // Driver code public static void main(String[] args) { int [] arr = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; int n = arr.length; System.out.println( "Maximum Subarray product is " + maxSubarrayProduct(arr, n)); } } |
Python3
# Python program to find Maximum Product Subarray import sys # Returns the product of max product subarray. def maxSubarrayProduct(arr, n): ans = - sys.maxsize - 1 # Initialize the answer to the minimum possible value product = 1 for i in range (n): product * = arr[i] ans = max (ans, product) # Update the answer with the maximum of the current answer and product if arr[i] = = 0 : product = 1 # Reset the product to 1 if the current element is 0 product = 1 for i in range (n - 1 , - 1 , - 1 ): product * = arr[i] ans = max (ans, product) if arr[i] = = 0 : product = 1 return ans # Driver code arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] n = len (arr) print ( "Maximum Subarray product is" , maxSubarrayProduct(arr, n)) |
C#
using System; public class MainClass { // Returns the product of max product subarray. public static int MaxSubarrayProduct( int [] arr, int n) { int ans = int .MinValue; // Initialize the answer to the // minimum possible value int product = 1; for ( int i = 0; i < n; i++) { product *= arr[i]; ans = Math.Max( ans, product); // Update the answer with the // maximum of the current // answer and product if (arr[i] == 0) { product = 1; // Reset the product to 1 if // the current element is 0 } } product = 1; for ( int i = n - 1; i >= 0; i--) { product *= arr[i]; ans = Math.Max(ans, product); if (arr[i] == 0) { product = 1; } } return ans; } // Driver code public static void Main() { int [] arr = { 1, -2, -3, 0, 7, -8, -2 }; int n = arr.Length; Console.WriteLine( "Maximum Subarray product is " + MaxSubarrayProduct(arr, n)); } } |
Javascript
// JavaScript program to find Maximum Product Subarray // Function to find the maximum product subarray function maxSubarrayProduct(arr, n) { let ans = -Infinity; let product = 1; for (let i = 0; i < n; i++) { product *= arr[i]; ans = Math.max(ans, product); if (arr[i] === 0) { product = 1; } } product = 1; for (let i = n - 1; i >= 0; i--) { product *= arr[i]; ans = Math.max(ans, product); if (arr[i] === 0) { product = 1; } } return ans; } // Driver code const arr = [1, -2, -3, 0, 7, -8, -2]; const n = arr.length; console.log(`Maximum Subarray product is ${maxSubarrayProduct(arr, n)}`); //This code is written by Sundaram |
Maximum Sub array product is 112
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: To solve the problem follow the below idea:
- The code defines a function named maxSubarrayProduct that takes an integer array A and its size n as arguments.
- It initializes a variable r with the first element of the array A. This variable will store the maximum subarray product found so far.
- The function then enters a loop that starts from the second element of the array A and goes up to the last element.
- Inside the loop, the function initializes two variables imax and imin with the value of r. These variables will store the maximum and minimum product of subarrays that end with the current number A[i].
- If the current number A[i] is negative, the function swaps imax and imin. This is because multiplying a negative number with a maximum product will give a minimum product and vice versa.
- The function then calculates the maximum and minimum product of subarrays that end with the current number A[i]. It does this by taking the maximum and minimum of either the current number A[i] or the maximum and minimum product of subarrays that end with the previous number times the current number.
- The function then updates the value of r to the maximum of r and imax. This is because the newly computed maximum value is a candidate for the global maximum subarray product.
- After the loop ends, the function returns the value of r.
- The code defines a main function that initializes an array arr with some values, calls the maxSubarrayProduct function passing the array and its size as arguments, and then prints the result to the console.
- The program then exits with a status of 0.
Below is the implementation of the above approach:
C++
#include <iostream> using namespace std; int maxSubarrayProduct( int A[], int n) { // store the result that is the max we have found so far int r = A[0]; // imax/imin stores the max/min product of // subarray that ends with the current number A[i] for ( int i = 1, imax = r, imin = r; i < n; i++) { // multiplied by a negative makes big number smaller, small number bigger // so we redefine the extremums by swapping them if (A[i] < 0) swap(imax, imin); // max/min product for the current number is either the current number itself // or the max/min by the previous number times the current one imax = max(A[i], imax * A[i]); imin = min(A[i], imin * A[i]); // the newly computed max value is a candidate for our global result r = max(r, imax); } return r; } int main() { int arr[] = { 1, -2, -3, 0, 7, -8, -2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Maximum Subarray Product is " << maxSubarrayProduct(arr, n); return 0; } |
Java
import java.util.*; public class Main { public static int maxSubarrayProduct( int [] A, int n) { // store the result that is the max we have found so far int r = A[ 0 ]; // imax/imin stores the max/min product of // subarray that ends with the current number A[i] int imax = r, imin = r; for ( int i = 1 ; i < n; i++) { // multiplied by a negative makes big number smaller, // small number bigger // so we redefine the extremums by swapping them if (A[i] < 0 ) { int temp = imax; imax = imin; imin = temp; } // max/min product for the current number is either the current number itself // or the max/min by the previous number times the current one imax = Math.max(A[i], imax * A[i]); imin = Math.min(A[i], imin * A[i]); // the newly computed max value is a candidate for our global result r = Math.max(r, imax); } return r; } public static void main(String[] args) { int [] arr = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 }; int n = arr.length; System.out.println( "Maximum Subarray Product is " + maxSubarrayProduct(arr, n)); } } |
Python3
def maxSubarrayProduct(arr): # Store the result that is the max we have found so far r = arr[ 0 ] # imax/imin store the max/min product of subarray that ends # with the current number arr[i] imax = r imin = r for i in range ( 1 , len (arr)): # Multiplied by a negative makes a big # number smaller and a small number bigger # So we redefine the extremums by swapping them if arr[i] < 0 : imax, imin = imin, imax # Max/min product for the current number is # either the current number itself # or the max/min by the previous number times the current one imax = max (arr[i], imax * arr[i]) imin = min (arr[i], imin * arr[i]) # The newly computed max value is a candidate # for our global result r = max (r, imax) return r arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ] print ( "Maximum Subarray Product is" , maxSubarrayProduct(arr)) |
C#
using System; class Program { // Function to find the maximum subarray // product from the given array static int MaxSubarrayProduct( int [] arr, int n) { int r = arr[0]; int imax = r, imin = r; for ( int i = 1; i < n; i++) { if (arr[i] < 0) { int temp = imax; imax = imin; imin = temp; } // Update the minimum and maximum imax = Math.Max(arr[i], imax * arr[i]); imin = Math.Min(arr[i], imin * arr[i]); r = Math.Max(r, imax); } return r; } // Driver Code static void Main( string [] args) { int [] arr = { 1, -2, -3, 0, 7, -8, -2 }; int n = arr.Length; Console.WriteLine( "Maximum Subarray Product is {0}" , MaxSubarrayProduct(arr, n)); } } |
Javascript
// Function to find the maximum subarray // product from the given array function maxSubarrayProduct(A, n) { // store the result that is the max we have found so far let r = A[0]; // imax/imin stores the max/min product of // subarray that ends with the current number A[i] let imax = r; let imin = r; for (let i = 1; i < n; i++) { // multiplied by a negative makes big number smaller, // small number bigger // so we redefine the extremums by swapping them if (A[i] < 0) { [imax, imin] = [imin, imax]; } // max/min product for the current number is either // the current number itself // or the max/min by the previous number times the // current one imax = Math.max(A[i], imax * A[i]); imin = Math.min(A[i], imin * A[i]); // the newly computed max value is a candidate for // our global result r = Math.max(r, imax); } return r; } const arr = [1, -2, -3, 0, 7, -8, -2]; const n = arr.length; console.log( "Maximum Subarray Product is " + maxSubarrayProduct(arr, n)); |
Maximum Subarray Product is 112
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is compiled by Dheeraj Jain and reviewed by neveropen team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!