Monday, November 18, 2024
Google search engine
HomeData Modelling & AICalculate Bitwise OR of two integers from their given Bitwise AND and...

Calculate Bitwise OR of two integers from their given Bitwise AND and Bitwise XOR values

Given two integers X and Y, representing Bitwise XOR and Bitwise AND of two positive integers, the task is to calculate the Bitwise OR value of those two positive integers.

Examples:

Input: X = 5, Y = 2 
Output:
Explanation: 
If A and B are two positive integers such that A ^ B = 5, A & B = 2, then the possible value of A and B is 3 and 6 respectively. 
Therefore, (A | B) = (3 | 6) = 7.

Input: X = 14, Y = 1 
Output: 15 
Explanation: 
If A and B are two positive integers such that A ^ B = 14, A & B = 1, then the possible value of A and B is 7 and 9 respectively. 
Therefore, (A | B) = (7 | 9) = 15.

Naive Approach: The simplest approach to solve this problem is to iterate up to the maximum of X and Y, say N, and generate all possible pairs of the first N natural numbers. For each pair, check if Bitwise XOR and the Bitwise AND of the pair is X and Y, respectively, or not. If found to be true, then print the Bitwise OR of that pair.

Below is the implementation of the above approach:

C++




// C++ program to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate Bitwise OR from given
// bitwise XOR and bitwise AND values
int findBitwiseORGivenXORAND(int X, int Y)
{
    int range = X + Y;
    // Find the max range
    int ans = 0;
    // Traversing all the number from 0 to rangr
    for (int i = 1; i <= range; i++) {
        for (int j = 1; j <= range; j++) {
            // If X and Y satisfie
            if ((i ^ j) == X && (i & j) == Y) {
                ans = (i | j);
                // Calculate the OR
                break;
            }
        }
    }
    return ans;
}
 
// Driver Code
int main()
{
    int X = 5, Y = 2;
    cout << findBitwiseORGivenXORAND(X, Y);
}


Java




// Java program to implement the above approach
import java.util.*;
 
public class GFG {
 
    // Function to calculate Bitwise OR from given
    // bitwise XOR and bitwise AND values
    static int findBitwiseORGivenXORAND(int X, int Y)
    {
        int range = X + Y;
        // Find the max range
        int ans = 0;
        // Traversing all the numbers from 0 to range
        for (int i = 1; i <= range; i++) {
            for (int j = 1; j <= range; j++) {
                // If X and Y satisfy the conditions
                if ((i ^ j) == X && (i & j) == Y) {
                    ans = (i | j);
                    // Calculate the OR
                    break;
                }
            }
        }
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int X = 5, Y = 2;
        System.out.println(findBitwiseORGivenXORAND(X, Y));
    }
}
 
// This code is contributed by Susobhan Akhuli


Python3




# Python program to implement the above approach
# Function to calculate Bitwise OR from given
# bitwise XOR and bitwise AND values
def findBitwiseORGivenXORAND(X, Y):
    range_val = X + Y
    # Find the max range
    ans = 0
    # Traversing all the numbers from 0 to range_val
    for i in range(1, range_val + 1):
        for j in range(1, range_val + 1):
            # If X and Y satisfy the conditions
            if (i ^ j) == X and (i & j) == Y:
                ans = (i | j)
                # Calculate the OR
                break
    return ans
 
# Driver Code
def main():
    X = 5
    Y = 2
    print(findBitwiseORGivenXORAND(X, Y))
 
if __name__ == "__main__":
    main()
 
# This code is contributed by Susobhan Akhuli


C#




// C# program to implement the above approach
using System;
 
public class GFG {
    // Function to calculate Bitwise OR from given
    // bitwise XOR and bitwise AND values
    static int FindBitwiseORGivenXORAND(int X, int Y)
    {
        int range = X + Y;
        int ans = 0;
 
        // Traversing all the numbers from 0 to range
        for (int i = 1; i <= range; i++) {
            for (int j = 1; j <= range; j++) {
                // If X and Y satisfy the conditions
                if ((i ^ j) == X && (i & j) == Y) {
                    ans = (i | j); // Calculate the OR
                    break;
                }
            }
        }
        return ans;
    }
 
    static void Main()
    {
        int X = 5, Y = 2;
        Console.WriteLine(FindBitwiseORGivenXORAND(X, Y));
    }
}
 
// This code is contributed by Susobhan Akhuli


Javascript




// Javascript program to implement the above approach
 
// Function to calculate Bitwise OR from given
// bitwise XOR and bitwise AND values
function findBitwiseORGivenXORAND(X, Y) {
    let range = X + Y;
    // Find the max range
    let ans = 0;
    // Traversing all the number from 0 to range
    for (let i = 1; i <= range; i++) {
        for (let j = 1; j <= range; j++) {
            // If X and Y satisfy
            if ((i ^ j) === X && (i & j) === Y) {
                ans = (i | j);
                // Calculate the OR
                break;
            }
        }
    }
    return ans;
}
 
// Driver Code
let X = 5, Y = 2;
console.log(findBitwiseORGivenXORAND(X, Y));


Output

7






Time Complexity: O(N2), where N = (X+Y) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is based on the following observations:

(A ^ B) = (A | B) – (A & B) 
=> (A | B) = (A ^ B) + (A & B) = X + Y 
 

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate Bitwise OR from given
// bitwise XOR and bitwise AND values
int findBitwiseORGivenXORAND(int X, int Y) { return X + Y; }
 
// Driver Code
int main()
{
    int X = 5, Y = 2;
    cout << findBitwiseORGivenXORAND(X, Y);
}


C




// C program to implement
// the above approach
#include <stdio.h>
 
// Function to calculate Bitwise OR from given
// bitwise XOR and bitwise AND values
int findBitwiseORGivenXORAND(int X, int Y)
{
  return X + Y;
}
 
// Driver Code
int main()
{
    int X = 5, Y = 2;
    printf("%d\n", findBitwiseORGivenXORAND(X, Y));
}
 
// This code is contributed by phalashi.


Java




// Java program to implement
// the above approach
class GFG {
 
    // Function to calculate Bitwise OR from given
    // bitwise XOR and bitwise AND values
    static int findBitwiseORGivenXORAND(int X, int Y)
    {
        return X + Y;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int X = 5, Y = 2;
        System.out.print(findBitwiseORGivenXORAND(X, Y));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 program to implement
# the above approach
 
# Function to calculate Bitwise OR from
# given bitwise XOR and bitwise AND values
 
 
def findBitwiseORGivenXORAND(X, Y):
 
    return X + Y
 
 
# Driver Code
if __name__ == "__main__":
 
    X = 5
    Y = 2
 
    print(findBitwiseORGivenXORAND(X, Y))
 
# This code is contributed by AnkitRai01


C#




// C# program to implement
// the above approach
using System;
 
class GFG {
 
    // Function to calculate Bitwise OR from given
    // bitwise XOR and bitwise AND values
    static int findBitwiseORGivenXORAND(int X, int Y)
    {
        return X + Y;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int X = 5, Y = 2;
 
        Console.Write(findBitwiseORGivenXORAND(X, Y));
    }
}
 
// This code is contributed by ipg2016107


Javascript




<script>
// JavaScript program to implement
// the above approach
 
// Function to calculate Bitwise OR from given
// bitwise XOR and bitwise AND values
function findBitwiseORGivenXORAND(X, Y)
{
    return X + Y;
}
 
// Driver Code
 
    let X = 5, Y = 2;
    document.write(findBitwiseORGivenXORAND(X, Y));
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output

7






Time Complexity: O(1) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments