Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIQueries to find the minimum index in given array having at least...

Queries to find the minimum index in given array having at least value X

Given an array arr[] of size N and an array Q[] consisting of M integers, each representing a query, the task for each query Q[i] is to find the smallest index of an array element whose value is greater than or equal to Q[i]. If no such index exists, then print -1.

Examples:

Input: arr[] = { 1, 9 }, Q[] = { 7, 10, 0 } 
Output: 1 -1 0 
Explanation: 
The smallest index of arr[] whose value is greater than Q[0] is 1. 
No such index exists in arr[] whose value is greater than Q[1]. 
The smallest index of arr[] whose value is greater than Q[2] is 0. 
Therefore, the required output is 1 -1 0.

Input: arr[] = {2, 3, 4}, Q[] = {2, 3, 4} 
Output: 0 1 2

Approach:The problem can be solved using Binary search and Prefix Sum technique. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the smallest index
// of an array element whose value is
// less than or equal to Q[i]
void minimumIndex(vector<int>& arr,
                  vector<int>& Q)
{
 
    // Stores size of array
    int N = arr.size();
 
    // Stores count of queries
    int M = Q.size();
 
    // Store array elements along
    // with the index
    vector<pair<int, int> > storeArrIdx;
 
    // Store smallest index of an array
    // element whose value is greater
    // than or equal to i
    vector<int> minIdx(N);
 
    // Traverse the array
    for (int i = 0; i < N; ++i) {
 
        // Insert {arr[i], i} into
        // storeArrIdx[]
        storeArrIdx.push_back({ arr[i], i });
    }
 
    // Sort the array
    sort(arr.begin(), arr.end());
 
    // Sort the storeArrIdx
    sort(storeArrIdx.begin(),
         storeArrIdx.end());
 
    // Stores index of arr[N - 1] in
    // sorted order
    minIdx[N - 1]
        = storeArrIdx[N - 1].second;
 
    // Traverse the array storeArrIdx[]
    for (int i = N - 2; i >= 0; i--) {
 
        // Update minIdx[i]
        minIdx[i] = min(minIdx[i + 1],
                        storeArrIdx[i].second);
    }
 
    // Traverse the array Q[]
    for (int i = 0; i < M; i++) {
 
        // Store the index of
        // lower_bound of Q[i]
        int pos
            = lower_bound(arr.begin(),
                          arr.end(), Q[i])
              - arr.begin();
 
        // If no index found whose value
        // greater than or equal to arr[i]
        if (pos == N) {
            cout << -1 << " ";
            continue;
        }
 
        // Print smallest index whose value
        // greater than or equal to Q[i]
        cout << minIdx[pos] << " ";
    }
}
 
// Driver Code
int main()
{
 
    vector<int> arr = { 1, 9 };
    vector<int> Q = { 7, 10, 0 };
 
    minimumIndex(arr, Q);
    return 0;
}


Java




// Java program for above approach
import java.util.*;
import java.lang.*;
class pair
{
  int element,index;
  pair(int element, int index)
  {
    this.element = element;
    this.index = index;
  }
}
class GFG
{
 
  // Function to find the smallest index
  // of an array element whose value is
  // less than or equal to Q[i]
  static void minimumIndex(int[] arr,
                           int[] Q)
  {
 
    // Stores size of array
    int N = arr.length;
 
    // Stores count of queries
    int M = Q.length;
 
    // Store array elements along
    // with the index
    ArrayList<pair> storeArrIdx = new ArrayList<>();
 
    // Store smallest index of an array
    // element whose value is greater
    // than or equal to i
    int[] minIdx = new int[N];
 
    // Traverse the array
    for (int i = 0; i < N; ++i)
    {
 
      // Insert {arr[i], i} into
      // storeArrIdx[]
      storeArrIdx.add(new pair(arr[i], i));
    }
 
    // Sort the array
    Arrays.sort(arr);
 
    // Sort the storeArrIdx
    Collections.sort(storeArrIdx, (a, b)->a.element-b.element);
 
    // Stores index of arr[N - 1] in
    // sorted order
    minIdx[N - 1]
      = storeArrIdx.get(N - 1).index;
 
    // Traverse the array storeArrIdx[]
    for (int i = N - 2; i >= 0; i--) {
 
      // Update minIdx[i]
      minIdx[i] =Math.min(minIdx[i + 1],
                          storeArrIdx.get(i).index);
    }
 
    // Traverse the array Q[]
    for (int i = 0; i < M; i++) {
 
      // Store the index of
      // lower_bound of Q[i]
      int pos
        = lower_bound(arr, Q[i]);
 
      // If no index found whose value
      // greater than or equal to arr[i]
      if (pos == N) {
        System.out.print("-1"+" ");
        continue;
      }
 
      // Print smallest index whose value
      // greater than or equal to Q[i]
      System.out.print(minIdx[pos]+" ");
    }
  }
  static int lower_bound(int[] arr,int element)
  {
    for(int i = 0; i < arr.length; i++)
      if(element <= arr[i])
        return i;
 
    return arr.length; 
  }
 
  // Driver function
  public static void main (String[] args)
  {
    int[] arr = { 1, 9 };
    int[] Q = { 7, 10, 0 };
 
    minimumIndex(arr, Q);
  }
}
 
// This code is contributed by offbeat


Python3




# Python3 program to implement
# the above approachf
from bisect import bisect_left
 
# Function to find the smallest index
# of an array element whose value is
# less than or equal to Q[i]
def minimumIndex(arr, Q):
 
    # Stores size of array
    N = len(arr)
 
    # Stores count of queries
    M = len(Q)
 
    # Store array elements along
    # with the index
    storeArrIdx = []
 
    # Store smallest index of an array
    # element whose value is greater
    # than or equal to i
    minIdx = [0]*(N)
 
    # Traverse the array
    for i in range(N):
       
        # Insert {arr[i], i} into
        # storeArrIdx[]
        storeArrIdx.append([arr[i], i])
 
    # Sort the array
    arr = sorted(arr)
 
    # Sort the storeArrIdx
    storeArrIdx = sorted(storeArrIdx)
 
    # Stores index of arr[N - 1] in
    # sorted order
    minIdx[N - 1] = storeArrIdx[N - 1][1]
 
    # Traverse the array storeArrIdx[]
    for i in range(N - 2, -1, -1):
 
        # Update minIdx[i]
        minIdx[i] = min(minIdx[i + 1], storeArrIdx[i][1])
 
    # Traverse the array Q[]
    for i in range(M):
 
        # Store the index of
        # lower_bound of Q[i]
        pos = bisect_left(arr, Q[i])
 
        # If no index found whose value
        # greater than or equal to arr[i]
        if (pos == N):
            print(-1, end = " ")
            continue
 
        # Print smallest index whose value
        # greater than or equal to Q[i]
        print(minIdx[pos], end = " ")
 
# Driver Code
if __name__ == '__main__':
    arr = [1, 9]
    Q = [7, 10, 0]
    minimumIndex(arr, Q)
 
    # This code is contributed by mohit kumar 29


C#




// C# program for above approach
 
using System;
using System.Collections.Generic;
using System.Linq;
 
class pair
{
  public int element,index;
  public pair(int element, int index)
  {
    this.element = element;
    this.index = index;
  }
}
 
class GFG
{
 
  // Function to find the smallest index
  // of an array element whose value is
  // less than or equal to Q[i]
  static void minimumIndex(int[] arr,
                           int[] Q)
  {
 
    // Stores size of array
    int N = arr.Length;
 
    // Stores count of queries
    int M = Q.Length;
 
    // Store array elements along
    // with the index
    List<pair> storeArrIdx = new List<pair>();
 
    // Store smallest index of an array
    // element whose value is greater
    // than or equal to i
    int[] minIdx = new int[N];
 
    // Traverse the array
    for (int i = 0; i < N; ++i)
    {
 
      // Insert {arr[i], i} into
      // storeArrIdx[]
      storeArrIdx.Add(new pair(arr[i], i));
    }
 
    // Sort the array
    Array.Sort(arr);
 
    // Sort the storeArrIdx
    storeArrIdx = storeArrIdx.OrderBy(a => a.element).ToList();
 
    // Stores index of arr[N - 1] in
    // sorted order
    minIdx[N - 1]
      = storeArrIdx[N - 1].index;
 
    // Traverse the array storeArrIdx[]
    for (int i = N - 2; i >= 0; i--) {
 
      // Update minIdx[i]
      minIdx[i] =Math.Min(minIdx[i + 1],
                          storeArrIdx[i].index);
    }
 
    // Traverse the array Q[]
    for (int i = 0; i < M; i++) {
 
      // Store the index of
      // lower_bound of Q[i]
      int pos
        = lower_bound(arr, Q[i]);
 
      // If no index found whose value
      // greater than or equal to arr[i]
      if (pos == N) {
        Console.Write("-1"+" ");
        continue;
      }
 
      // Print smallest index whose value
      // greater than or equal to Q[i]
      Console.Write(minIdx[pos]+" ");
    }
  }
  static int lower_bound(int[] arr,int element)
  {
    for(int i = 0; i < arr.Length; i++)
      if(element <= arr[i])
        return i;
 
    return arr.Length; 
  }
 
  // Driver function
  public static void Main (string[] args)
  {
    int[] arr = { 1, 9 };
    int[] Q = { 7, 10, 0 };
 
    minimumIndex(arr, Q);
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
 
// JavaScript program for above approach
 
class pair
{
    constructor(element,index)
    {
        this.element = element;
        this.index = index;
    }
}
 
// Function to find the smallest index
  // of an array element whose value is
  // less than or equal to Q[i]
function minimumIndex(arr,Q)
{
    // Stores size of array
    let N = arr.length;
  
    // Stores count of queries
    let M = Q.length;
  
    // Store array elements along
    // with the index
    let storeArrIdx = [];
  
    // Store smallest index of an array
    // element whose value is greater
    // than or equal to i
    let minIdx = new Array(N);
     for(let i=0;i<N;i++)
    {
        minIdx[i]=0;
    }
    // Traverse the array
    for (let i = 0; i < N; ++i)
    {
  
      // Insert {arr[i], i} into
      // storeArrIdx[]
      storeArrIdx.push([arr[i], i]);
    }
  
    // Sort the array
    (arr).sort(function(a,b){return a-b;});
  
    // Sort the storeArrIdx
    storeArrIdx.sort(function(a, b){ return a[0]-b[0]});
  
    // Stores index of arr[N - 1] in
    // sorted order
    minIdx[N - 1]
      = storeArrIdx[N - 1][1];
  
    // Traverse the array storeArrIdx[]
    for (let i = N - 2; i >= 0; i--) {
  
      // Update minIdx[i]
      minIdx[i] =Math.min(minIdx[i + 1],
                          storeArrIdx[i][1]);
    }
  
    // Traverse the array Q[]
    for (let i = 0; i < M; i++) {
  
      // Store the index of
      // lower_bound of Q[i]
      let pos
        = lower_bound(arr, Q[i]);
  
      // If no index found whose value
      // greater than or equal to arr[i]
      if (pos == N) {
        document.write("-1"+" ");
        continue;
      }
  
      // Print smallest index whose value
      // greater than or equal to Q[i]
      document.write(minIdx[pos]+" ");
    }
}
 
function lower_bound(arr,element)
{
    for(let i = 0; i < arr.length; i++)
      if(element <= arr[i])
        return i;
  
    return arr.length;
}
 
// Driver function
let arr=[1, 9];
let Q=[7, 10, 0 ];
 
minimumIndex(arr, Q);
 
 
// This code is contributed by patel2127
 
</script>


Output: 

1 -1 0

 

Time Complexity: O(N * log(N)) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments