Given an array arr[] containing n numbers, the task is to find the length of the longest ZigZag subarray such that every element in the subarray should be in form
a < b > c < d > e < f
Examples:
Input: arr[] = {12, 13, 1, 5, 4, 7, 8, 10, 10, 11}
Output: 6
Explanation:
The subarray is {12, 13, 1, 5, 4, 7} whose length is 6 and is in zigzag fashion.Input: arr[] = {1, 2, 3, 4, 5}
Output: 2
Explanation:
The subarray is {1, 2} or {2, 3} or {4, 5} whose length is 2.
Approach: To solve the problem mentioned above following steps are followed:
- Initially initialize cnt, a counter as 1.
- Iterate among the array elements, check if elements are in form
a < b > c < d > e < f
- If true Increase the cnt by 1. If it is not in form
a < b > c < d > e < f
- then re-initialize cnt by 1.
Below is the implementation of the above approach:
C++
// C++ implementation to find // the length of longest zigzag // subarray of the given array #include <bits/stdc++.h> using namespace std; // Function to find the length of // longest zigZag contiguous subarray int lenOfLongZigZagArr( int a[], int n) { // 'max' to store the length // of longest zigZag subarray int max = 1, // 'len' to store the lengths // of longest zigZag subarray // at different instants of time len = 1; // Traverse the array from the beginning for ( int i = 0; i < n - 1; i++) { if (i % 2 == 0 && (a[i] < a[i + 1])) len++; else if (i % 2 == 1 && (a[i] > a[i + 1])) len++; else { // Check if 'max' length // is less than the length // of the current zigzag subarray. // If true, then update 'max' if (max < len) max = len; // Reset 'len' to 1 // as from this element, // again the length of the // new zigzag subarray // is being calculated len = 1; } } // comparing the length of the last // zigzag subarray with 'max' if (max < len) max = len; // Return required maximum length return max; } // Driver code int main() { int arr[] = { 1, 2, 3, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << lenOfLongZigZagArr(arr, n); return 0; } |
Java
// Java implementation to find // the length of longest zigzag // subarray of the given array import java.io.*; import java.util.*; class GFG { // Function to find the length of // longest zigZag contiguous subarray static int lenOfLongZigZagArr( int a[], int n) { // 'max' to store the length // of longest zigZag subarray int max = 1 , // 'len' to store the lengths // of longest zigZag subarray // at different instants of time len = 1 ; // Traverse the array from the beginning for ( int i = 0 ; i < n - 1 ; i++) { if (i % 2 == 0 && (a[i] < a[i + 1 ])) len++; else if (i % 2 == 1 && (a[i] > a[i + 1 ])) len++; else { // Check if 'max' length // is less than the length // of the current zigzag subarray. // If true, then update 'max' if (max < len) max = len; // Reset 'len' to 1 // as from this element, // again the length of the // new zigzag subarray // is being calculated len = 1 ; } } // comparing the length of the last // zigzag subarray with 'max' if (max < len) max = len; // Return required maximum length return max; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 }; int n = arr.length; System.out.println(lenOfLongZigZagArr(arr, n)); } } // This code is contributed by coder001 |
Python3
# Python3 implementation to find the # length of longest zigzag subarray # of the given array # Function to find the length of # longest zigZag contiguous subarray def lenOfLongZigZagArr(a, n): # '_max' to store the length # of longest zigZag subarray _max = 1 # '_len' to store the lengths # of longest zigZag subarray # at different instants of time _len = 1 # Traverse the array from the beginning for i in range (n - 1 ): if i % 2 = = 0 and a[i] < a[i + 1 ]: _len + = 1 elif i % 2 = = 1 and a[i] > a[i + 1 ]: _len + = 1 else : # Check if '_max' length is less than # the length of the current zigzag # subarray. If true, then update '_max' if _max < _len: _max = _len # Reset '_len' to 1 as from this element, # again the length of the new zigzag # subarray is being calculated _len = 1 # Comparing the length of the last # zigzag subarray with '_max' if _max < _len: _max = _len # Return required maximum length return _max # Driver code arr = [ 1 , 2 , 3 , 4 , 5 ] n = len (arr) print (lenOfLongZigZagArr(arr, n)) # This code is contributed by divyamohan123 |
C#
// C# implementation to find // the length of longest zigzag // subarray of the given array using System; class GFG{ // Function to find the length of // longest zigZag contiguous subarray static int lenOflongZigZagArr( int []a, int n) { // 'max' to store the length // of longest zigZag subarray int max = 1, // 'len' to store the lengths // of longest zigZag subarray // at different instants of time len = 1; // Traverse the array from the beginning for ( int i = 0; i < n - 1; i++) { if (i % 2 == 0 && (a[i] < a[i + 1])) len++; else if (i % 2 == 1 && (a[i] > a[i + 1])) len++; else { // Check if 'max' length // is less than the length // of the current zigzag subarray. // If true, then update 'max' if (max < len) max = len; // Reset 'len' to 1 // as from this element, // again the length of the // new zigzag subarray // is being calculated len = 1; } } // Comparing the length of the last // zigzag subarray with 'max' if (max < len) max = len; // Return required maximum length return max; } // Driver Code public static void Main(String[] args) { int []arr = { 1, 2, 3, 4, 5 }; int n = arr.Length; Console.WriteLine(lenOflongZigZagArr(arr, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation to find // the length of longest zigzag // subarray of the given array // Function to find the length of // longest zigZag contiguous subarray function lenOfLongZigZagArr( a, n) { // 'max' to store the length // of longest zigZag subarray var max = 1, // 'len' to store the lengths // of longest zigZag subarray // at different instants of time len = 1; // Traverse the array from the beginning for ( var i = 0; i < n - 1; i++) { if (i % 2 == 0 && (a[i] < a[i + 1])) len++; else if (i % 2 == 1 && (a[i] > a[i + 1])) len++; else { // Check if 'max' length // is less than the length // of the current zigzag subarray. // If true, then update 'max' if (max < len) max = len; // Reset 'len' to 1 // as from this element, // again the length of the // new zigzag subarray // is being calculated len = 1; } } // comparing the length of the last // zigzag subarray with 'max' if (max < len) max = len; // Return required maximum length return max; } // Driver code var arr = [ 1, 2, 3, 4, 5 ]; var n = arr.length; document.write( lenOfLongZigZagArr(arr, n)); </script> |
2
Complexity Analysis :
Time Complexity – O(n), where n is the length of the array.
Auxiliary Space – O(1), no extra space required.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!