Given a number n, find GCD of its digits.
Examples :
Input : 345 Output : 1 GCD of 3, 4 and 5 is 1. Input : 2448 Output : 2 GCD of 2, 4, 4 and 8 is 2
We traverse the digits of number one by one using below loop
digit = n mod 10; n = n / 10;
While traversing digits, we keep track of current GCD and keep updating GCD by finding GCD of current digit with current GCD.
C++
// CPP program to find GCD of digits of a number #include<iostream> #include<algorithm> using namespace std; int digitGCD( int n) { int gcd = 0; while (n > 0) { gcd = __gcd(n%10, gcd); // If at point GCD becomes 1, // return it if (gcd == 1) return 1; n = n/10; } return gcd; } // driver code int main() { long n = 2448; cout << digitGCD(n); return 0; } |
Java
// Java program to find GCD of digits of a number class GFG { // Recursive function to return gcd of a and b static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } static int digitGCD( int n) { int gcd = 0 ; while (n > 0 ) { gcd = __gcd(n % 10 , gcd); // If at point GCD becomes 1, // return it if (gcd == 1 ) return 1 ; n = n / 10 ; } return gcd; } // Driver code public static void main (String[] args) { int n = 2448 ; System.out.print(digitGCD(n)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python program to find # GCD of digits of a number # Recursive function to return gcd of a and b def __gcd(a,b): return a if (b = = 0 ) else __gcd(b, a % b) def digitGCD(n): gcd = 0 while (n > 0 ): gcd = __gcd(n % 10 , gcd) # If at point GCD becomes 1, # return it if (gcd = = 1 ): return 1 n = n / / 10 return gcd #Driver code n = 2448 print (digitGCD(n)) # This code is contributed # by Anant Agarwal. |
C#
// C# program to find GCD of // digits of a number using System; class GFG { // Recursive function to return // gcd of a and b static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } static int digitGCD( int n) { int gcd = 0; while (n > 0) { gcd = __gcd(n % 10, gcd); // If at point GCD becomes 1, // return it if (gcd == 1) return 1; n = n / 10; } return gcd; } // Driver code public static void Main () { int n = 2448; Console.Write(digitGCD(n)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to find GCD // of digits of a number // Recursive function to // return gcd of a and b function __gcd( $a , $b ) { return $b == 0 ? $a : __gcd( $b , $a % $b ); } function digitGCD( $n ) { $gcd = 0; while ( $n > 0) { $gcd = __gcd( $n % 10, $gcd ); // If at point GCD // becomes 1, return it if ( $gcd == 1) return 1; $n = $n / 10; } return $gcd ; } // Driver code $n = 2448; echo digitGCD( $n ); // This code is contributed by Sam007 ?> |
Javascript
<script> // javascript program to find GCD of digits of a number // Recursive function to return gcd of a and b function __gcd(a, b) { return b == 0 ? a : __gcd(b, a % b); } function digitGCD(n) { var gcd = 0; while (n > 0) { gcd = __gcd(n % 10, gcd); // If at point GCD becomes 1, // return it if (gcd == 1) return 1; n = parseInt(n / 10); } return gcd; } // Driver code var n = 2448; document.write(digitGCD(n)); // This code is contributed by aashish1995 </script> |
Output :
2
Time complexity: O(logn)
Auxiliary Space: O(1)
This article is contributed by Dibyendu Roy Chaudhuri. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!