Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICount smaller numbers whose XOR with n produces greater value

Count smaller numbers whose XOR with n produces greater value

Given a positive integer n, count numbers x such that 0 < x <n and x^n > n where ^ is bitwise XOR operation.
Examples: 
 

Input  : n = 12
Output : 3
Numbers are 1, 2 and 3
1^12 > 12,  2^12 > 12 and 3^12 > 12

Input  : n = 11
Output : 4
Numbers are 4, 5, 6 and 7

 

A number may x produce a greater XOR value if x has a set bit at a position where n has a 0 bit. So we traverse bits of n, and one by one consider all 0 bits. For every set bit at position k (Considering k = 0 for rightmost bit, k = 1 for second rightmost bit, ..), we add 2 2k to result. For a bit at k-th position, there are 2k numbers with set bit 1. 
Below is the implementation of the above idea. 
 

C++




// C++ program to count numbers whose XOR with n
// produces a value more than n.
#include<bits/stdc++.h>
using namespace std;
 
int countNumbers(int n)
{
    /* If there is a number like m = 11110000,
    then it is bigger than 1110xxxx. x can either
    0 or 1. So we have pow(2, k) greater numbers
    where k is  position of rightmost 1 in m. Now
    by using XOR bit at each  position can be changed.
    To change bit at any position, it needs to XOR
    it with 1. */
    int k = 0; // Position of current bit in n
 
    /* Traverse bits from LSB (least significant bit)
       to MSB */
    int count = 0;  // Initialize result
    while (n > 0)
    {
        // If current bit is 0, then there are
        // 2^k numbers with current bit 1 and
        // whose XOR with n produces greater value
        if ((n&1) == 0)
            count += pow(2, k);
 
        // Increase position for next bit
        k += 1;
 
        // Reduce n to find next bit
        n >>= 1;
    }
 
    return count;
}
 
// Driver code
int main()
{
    int n = 11;
    cout << countNumbers(n) << endl;
    return 0;
}


Java




// Java program to count numbers
// whose XOR with n produces a
// value more than n.
import java.lang.*;
class GFG {
 
    static int countNumbers(int n)
    {
 
        // If there is a number like
        // m = 11110000, then it is
        // bigger than 1110xxxx. x
        // can either be 0 or 1. So
        // where k is the position of
        // rightmost 1 in m. Now by
        // using the XOR bit at each
        // position can be changed.
        // To change the bit at any
        // position, it needs to
        // XOR it with 1.
        int k = 0;
        // Position of current bit in n
 
        // Traverse bits from LSB (least
        // significant bit) to MSB
 
        int count = 0;
        // Initialize result
        while (n > 0) {
            // If the current bit is 0, then
            // there are 2^k numbers with
            // current bit 1 and whose XOR
            // with n produces greater value
            if ((n & 1) == 0)
                count += (int)(Math.pow(2, k));
 
            // Increase position for next bit
            k += 1;
 
            // Reduce n to find next bit
            n >>= 1;
        }
 
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 11;
        System.out.println(countNumbers(n));
    }
}
 
// This code is contributed by Smitha.


Python3




# Python program to count numbers whose
# XOR with n produces a value more than n.
 
def countNumbers(n):
 
    ''' If there is a number like m = 11110000,
    then it is bigger than 1110xxxx. x can either
    0 or 1. So we have pow(2, k) greater numbers
    where k is position of rightmost 1 in m. Now
    by using XOR bit at each position can be changed.
    To change bit at any position, it needs to XOR
    it with 1. '''
     
    # Position of current bit in n
    k = 0
 
    # Traverse bits from
    # LSB to MSB
    count = 0 # Initialize result
    while (n > 0):
     
        # If current bit is 0, then there are
        # 2^k numbers with current bit 1 and
        # whose XOR with n produces greater value
        if ((n & 1) == 0):
            count += pow(2, k)
 
        # Increase position for next bit
        k += 1
 
        # Reduce n to find next bit
        n >>= 1
 
    return count
 
# Driver code
n = 11
print(countNumbers(n))
 
# This code is contributed by Anant Agarwal.


C#




// C# program to count numbers
// whose XOR with n produces a
// value more than n.
using System;
 
class GFG {
 
    static int countNumbers(int n)
    {
 
        // If there is a number like
        // m = 11110000, then it is
        // bigger than 1110xxxx. x
        // can either be 0 or 1. So
        // where k is the position of
        // rightmost 1 in m. Now by
        // using the XOR bit at each
        // position can be changed.
        // To change the bit at any
        // position, it needs to
        // XOR it with 1.
        int k = 0;
        // Position of current bit in n
 
        // Traverse bits from LSB (least
        // significant bit) to MSB
 
        int count = 0;
        // Initialize result
        while (n > 0) {
            // If the current bit is 0, then
            // there are 2^k numbers with
            // current bit 1 and whose XOR
            // with n produces greater value
            if ((n & 1) == 0)
                count += (int)(Math.Pow(2, k));
 
            // Increase position for next bit
            k += 1;
 
            // Reduce n to find next bit
            n >>= 1;
        }
 
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 11;
        Console.WriteLine(countNumbers(n));
    }
}
 
// This code is contributed by Anant Agarwal.


PHP




<?php
// PHP program to count
// numbers whose XOR with n
// produces a value more than n.
 
function countNumbers($n)
{
     
    /* If there is a number
       like m = 11110000,
       then it is bigger
       than 1110xxxx. x
       can either 0 or 1.
       So we have pow(2, k)
       greater numbers where
       k is position of
       rightmost 1 in m.
       Now by using XOR bit
       at each position can
       be changed. To change
       bit at any position,
       it needs to XOR it
       with 1. */
        
    // Position of current bit in n
    $k = 0;
     
    /* Traverse bits from LSB
       (least significant bit)
       to MSB */
        
    // Initialize result  
    $count = 0;
    while ($n > 0)
    {
         
        // If current bit is 0,
        // then there are 2^k
        // numbers with current
        // bit 1 and whose XOR
        // with n produces greater
        // value
        if (($n & 1) == 0)
            $count += pow(2, $k);
 
        // Increase position
        // for next bit
        $k += 1;
 
        // Reduce n to
        // find next bit
        $n >>= 1;
    }
 
    return $count;
}
 
    // Driver code
    $n = 11;
    echo countNumbers($n);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// Javascript program  to count numbers whose XOR with n
// produces a value more than n.
   
    function countNumbers(n)
    {
   
        // If there is a number like
        // m = 11110000, then it is
        // bigger than 1110xxxx. x
        // can either be 0 or 1. So
        // where k is the position of
        // rightmost 1 in m. Now by
        // using the XOR bit at each
        // position can be changed.
        // To change the bit at any
        // position, it needs to
        // XOR it with 1.
        let k = 0;
        // Position of current bit in n
   
        // Traverse bits from LSB (least
        // significant bit) to MSB
   
        let count = 0;
        // Initialize result
        while (n > 0) {
            // If the current bit is 0, then
            // there are 2^k numbers with
            // current bit 1 and whose XOR
            // with n produces greater value
            if ((n & 1) == 0)
                count += (Math.pow(2, k));
   
            // Increase position for next bit
            k += 1;
   
            // Reduce n to find next bit
            n >>= 1;
        }
   
        return count;
    }
 
// Driver Code
     
    let n = 11;
    document.write(countNumbers(n));
         
</script>


Output: 

4

Time complexity: O(logn)

Auxiliary Space: O(1)

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments