Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICheck whether the number can be made perfect square after adding 1

Check whether the number can be made perfect square after adding 1

Given an integer N, the task is to check whether N the given number can be made a perfect square after adding 1 to it.

Examples:  

Input:
Output: Yes 
3 + 1 = 4 which is a perfect square i.e. 22

Input:
Output: No 
5 + 1 = 6 which is not a perfect square. 

Approach: Check whether n + 1 is a perfect square or not by taking the square root of n + 1 and checking whether it is an integer. If it is then n + 1 is a perfect square and n is a sunny number.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true
// if x is a perfect square
bool isPerfectSquare(long double x)
{
 
    // Find floating point value of
    // square root of x
    long double sr = sqrt(x);
 
    // If square root is an integer
    return ((sr - floor(sr)) == 0);
}
 
// Function that returns true
// if n is a sunny number
bool isSunnyNum(int n)
{
 
    // If (n + 1) is a perfect square
    if (isPerfectSquare(n + 1))
        return true;
    return false;
}
 
// Driver code
int main()
{
    int n = 3;
 
    if (isSunnyNum(n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
     
    // Function that returns true
    // if x is a perfect square
    static boolean isPerfectSquare(double x)
    {
     
        // Find floating point value of
        // square root of x
        double sr = Math.sqrt(x);
     
        // If square root is an integer
        return ((sr - Math.floor(sr)) == 0);
    }
     
    // Function that returns true
    // if n is a sunny number
    static boolean isSunnyNum(int n)
    {
     
        // If (n + 1) is a perfect square
        if (isPerfectSquare(n + 1))
            return true;
        return false;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 3;
     
        if (isSunnyNum(n))
            System.out.println("Yes");
        else
            System.out.println("No");
     
    }
}
 
// This code is contributed by Ryuga


Python3




# Python3 implementation of the approach
import math as mt
 
# Function that returns true
# if x is a perfect square
def isPerfectSquare(x):
 
    # Find floating po value of
    # square root of x
    sr = mt.sqrt(x)
 
    # If square root is an eger
    return ((sr - mt.floor(sr)) == 0)
 
# Function that returns true
# if n is a sunny number
def isSunnyNum(n):
 
    # If (n + 1) is a perfect square
    if (isPerfectSquare(n + 1)):
        return True
    return False
 
# Driver code
n = 3
 
if (isSunnyNum(n)):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Mohit Kumar


C#




// C# implementation of the approach
using System;
class GFG
{
     
    // Function that returns true
    // if x is a perfect square
    static bool isPerfectSquare(double x)
    {
     
        // Find floating point value of
        // square root of x
        double sr = Math.Sqrt(x);
     
        // If square root is an integer
        return ((sr - Math.Floor(sr)) == 0);
    }
     
    // Function that returns true
    // if n is a sunny number
    static bool isSunnyNum(int n)
    {
     
        // If (n + 1) is a perfect square
        if (isPerfectSquare(n + 1))
            return true;
        return false;
    }
     
    // Driver code
    public static void Main ()
    {
        int n = 3;
     
        if (isSunnyNum(n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by Code_Mech.


PHP




<?php
// PHP implementation of the approach
 
// Function that returns true
// if x is a perfect square
function isPerfectSquare($x)
{
 
    // Find floating point value of
    // square root of x
    $sr = sqrt($x);
 
    // If square root is an integer
    return (($sr - floor($sr)) == 0);
}
 
// Function that returns true
// if n is a sunny number
function isSunnyNum($n)
{
 
    // If (n + 1) is a perfect square
    if (isPerfectSquare($n + 1))
        return true;
    return false;
}
 
// Driver code
$n = 3;
 
if (isSunnyNum($n))
    echo "Yes";
else
    echo "No";
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true
// if x is a perfect square
function isPerfectSquare(x)
{
     
    // Find floating point value of
    // square root of x
    let sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function that returns true
// if n is a sunny number
function isSunnyNum(n)
{
     
    // If (n + 1) is a perfect square
    if (isPerfectSquare(n + 1))
        return true;
         
    return false;
}
 
// Driver code
let n = 3;
 
if (isSunnyNum(n))
    document.write("Yes");
else
    document.write("No");
     
// This code is contributed by rishavmahato348
 
</script>


Output: 

Yes

 

Time Complexity: O(logn)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments