Monday, November 18, 2024
Google search engine
HomeData Modelling & AICount of all possible reverse bitonic subarrays

Count of all possible reverse bitonic subarrays

Given an array arr[] of N integers, the task is to count the total number of Reverse Bitonic Subarray from the given array.
 

A Reverse Bitonic Subarray is a subarray in which elements are arranged in decreasing order and then arranged in increasing order. A strictly increasing or strictly decreasing subarray is also considered as Reverse Bitonic Subarray. 
 

Examples: 
 

Input: arr[] = {2, 3, 1, 4} 
Output:
Explanation: 
Here we will look for all length’s subarrays of given array 
For length 1, all the subarrays are reverse bitonic subarray {2}, {3}, {1}, {4} 
For length 2, possible subarrays are {2, 3}, {3, 1}, {1, 4} 
For length 3, possible subarray is {3, 1, 4} 
So in total, there are 8 subarrays possible.
Input: arr[] = [1, 2, 3] 
Output:
Explanation: 
Here we will look for all length’s subarrays of given array 
For length 1, all the subarrays are reverse bitonic {1}, {2}, {3} 
For length 2, possible subarrays are {1, 2}, {2, 3} 
For length 3, possible subarray is {1, 2, 3}. 
So in total, there are 6 subarrays possible. 
 

 

Approach: The idea is to generate all the subarrays from the given array and check if each subarray satisfy the below mentioned conditions: 
 

  • When the subarray elements are strictly increasing, then take the first element and then check for next to be increasing.
  • When the subarray elements are strictly decreasing, then take the first element and then check for next to be decreasing.
  • When the subarray elements are strictly decreasing then increasing, then in that case, take the first element and then check for next to decreasing and when it becomes false then check for increasing till the last element.

Below is the implementation of the above approach: 
 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that counts all the reverse
// bitonic subarray in arr[]
void countReversebitonic(int arr[],
                         int n)
{
    // To store the count of reverse
    // bitonic subarray
    int c = 0;
 
    // Iterate the array and select
    // the starting element
    for (int i = 0; i < n; i++) {
 
        // Iterate for selecting the
        // ending element for subarray
        for (int j = i; j < n; j++) {
 
            // Subarray arr[i to j]
            int temp = arr[i], f = 0;
 
            // For 1 length, increment
            // the count and continue
            if (j == i) {
                c++;
                continue;
            }
 
            int k = i + 1;
 
            // For Decreasing Subarray
            while (temp > arr[k]
                   && k <= j) {
                temp = arr[k];
                k++;
            }
 
            // Check if only Decreasing
            if (k > j) {
                c++;
                f = 2;
            }
 
            // For Increasing Subarray
            while (temp < arr[k]
                   && k <= j && f != 2) {
                temp = arr[k];
                k++;
            }
 
            if (k > j && f != 2) {
                c++;
                f = 0;
            }
        }
    }
 
    // Print the total count of subarrays
    cout << c << endl;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 3, 1, 4 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    countReversebitonic(arr, N);
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function that counts all the reverse
// bitonic subarray in arr[]
static void countReversebitonic(int arr[],
                                int n)
{
     
    // To store the count of reverse
    // bitonic subarray
    int c = 0;
 
    // Iterate the array and select
    // the starting element
    for(int i = 0; i < n; i++)
    {
        
       // Iterate for selecting the
       // ending element for subarray
       for(int j = i; j < n; j++)
       {
            
          // Subarray arr[i to j]
          int temp = arr[i], f = 0;
           
          // For 1 length, increment
          // the count and continue
          if (j == i)
          {
              c++;
              continue;
          }
          int k = i + 1;
           
          // For decreasing subarray
          while (temp > arr[k] && k <= j)
          {
              temp = arr[k];
              k++;
          }
           
          // Check if only decreasing
          if (k > j)
          {
              c++;
              f = 2;
          }
           
          // For increasing subarray
          while (k <= j && temp < arr[k] &&
                 f != 2)
          {
              temp = arr[k];
              k++;
          }
          if (k > j && f != 2)
          {
              c++;
              f = 0;
          }
       }
    }
 
    // Print the total count of subarrays
    System.out.print(c + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given array arr[]
    int arr[] = { 2, 3, 1, 4 };
 
    int N = arr.length;
 
    // Function Call
    countReversebitonic(arr, N);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
 
# Function that counts all the reverse
# bitonic subarray in arr[]
def countReversebitonic(arr, n):
 
    # To store the count of reverse
    # bitonic subarray
    c = 0;
 
    # Iterate the array and select
    # the starting element
    for i in range(n):
 
        # Iterate for selecting the
        # ending element for subarray
        for j in range(i, n):
 
            # Subarray arr[i to j]
            temp = arr[i]
            f = 0;
 
            # For 1 length, increment
            # the count and continue
            if (j == i):
                c += 1;
                continue;
                 
            k = i + 1;
 
            # For Decreasing Subarray
            while (k <= j and temp > arr[k]):
                temp = arr[k];
                k += 1;
             
            # Check if only Decreasing
            if (k > j):
                c += 1;
                f = 2;
             
 
            # For Increasing Subarray
            while (k <= j and temp < arr[k] and
                   f != 2):
                temp = arr[k];
                k += 1;
             
            if (k > j and f != 2):
                c += 1;
                f = 0;
                 
    # Print the total count of subarrays
    print(c)
 
# Driver Code
 
# Given array arr[]
arr = [ 2, 3, 1, 4 ];
 
# Function Call
countReversebitonic(arr, len(arr));
 
# This code is contributed by grand_master


C#




// C# program for the above approach
using System;
class GFG{
 
// Function that counts all the reverse
// bitonic subarray in arr[]
static void countReversebitonic(int []arr,
                                int n)
{
     
    // To store the count of reverse
    // bitonic subarray
    int c = 0;
 
    // Iterate the array and select
    // the starting element
    for(int i = 0; i < n; i++)
    {
         
        // Iterate for selecting the
        // ending element for subarray
        for(int j = i; j < n; j++)
        {
                 
            // Subarray arr[i to j]
            int temp = arr[i], f = 0;
                 
            // For 1 length, increment
            // the count and continue
            if (j == i)
            {
                c++;
                continue;
            }
            int k = i + 1;
                 
            // For decreasing subarray
            while (temp > arr[k] && k <= j)
            {
                temp = arr[k];
                k++;
            }
                 
            // Check if only decreasing
            if (k > j)
            {
                c++;
                f = 2;
            }
                 
            // For increasing subarray
            while (k <= j && temp < arr[k] &&
                   f != 2)
            {
                temp = arr[k];
                k++;
            }
            if (k > j && f != 2)
            {
                c++;
                f = 0;
            }
        }
    }
 
    // Print the total count of subarrays
    Console.Write(c);
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given array arr[]
    int []arr = { 2, 3, 1, 4 };
 
    int N = arr.Length;
 
    // Function Call
    countReversebitonic(arr, N);
}
}
 
// This code is contributed by Ritik Bansal


Javascript




<script>
 
// JavaScript program for the above approach
     
// Function that counts all the reverse
// bitonic subarray in arr[]
function countReversebitonic(arr, n)
{
     
    // To store the count of reverse
    // bitonic subarray
    let c = 0;
 
    // Iterate the array and select
    // the starting element
    for(let i = 0; i < n; i++)
    {
        
       // Iterate for selecting the
       // ending element for subarray
       for(let j = i; j < n; j++)
       {
            
          // Subarray arr[i to j]
          let temp = arr[i], f = 0;
           
          // For 1 length, increment
          // the count and continue
          if (j == i)
          {
              c++;
              continue;
          }
          let k = i + 1;
           
          // For decreasing subarray
          while (temp > arr[k] && k <= j)
          {
              temp = arr[k];
              k++;
          }
           
          // Check if only decreasing
          if (k > j)
          {
              c++;
              f = 2;
          }
           
          // For increasing subarray
          while (k <= j && temp < arr[k] &&
                 f != 2)
          {
              temp = arr[k];
              k++;
          }
          if (k > j && f != 2)
          {
              c++;
              f = 0;
          }
       }
    }
 
    // Print the total count of subarrays
    document.write(c + "<br/>");
}
 
 
// Driver Code
 
        // Given array arr[]
    let arr = [ 2, 3, 1, 4 ];
 
    let N = arr.length;
 
    // Function Call
    countReversebitonic(arr, N);
 
</script>


Output: 

8

 

Time Complexity: O(N2), where N is the number of elements in the given array.
 

Last Updated :
09 Jun, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments