Given an integer N, the task is to check if N is a Zuckerman Number.
Zuckerman Number is a number which is divisible by the product of its digits
Examples:
Input: N = 115
Output: Yes
Explanation:
1*1*5 = 5 and 115 % 5 = 0
Input: N = 28
Output: No
Approach: The idea is to find the product of digits of N and check if N is divisible by its product of digits or not. If yes then the number N is a Zuckerman Number.
Below is the implementation of the above approach:
C++
// C++ implementation to check if N // is a Zuckerman number #include <bits/stdc++.h> using namespace std; // Function to get product of digits int getProduct( int n) { int product = 1; while (n != 0) { product = product * (n % 10); n = n / 10; } return product; } // Function to check if N is an // Zuckerman number bool isZuckerman( int n) { return n % getProduct(n) == 0; } // Driver code int main() { int n = 115; if (isZuckerman(n)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation to check if N // is a Zuckerman number class GFG{ // Function to get product of digits static int getProduct( int n) { int product = 1 ; while (n != 0 ) { product = product * (n % 10 ); n = n / 10 ; } return product; } // Function to check if N is an // Zuckerman number static boolean isZuckerman( int n) { return n % getProduct(n) == 0 ; } // Driver code public static void main(String[] args) { int n = 115 ; if (isZuckerman(n)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } // This code is contributed by shubham |
Python 3
# Python3 implementation to check if N # is a Zuckerman number # Function to get product of digits def getProduct(n): product = 1 while (n > 0 ): product = product * (n % 10 ) n = n / / 10 return product # Function to check if N is an # Zuckerman number def isZuckerman(n): return n % getProduct(n) = = 0 # Driver code N = 115 if (isZuckerman(N)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by Vishal Maurya |
C#
// C# implementation to check if N // is a Zuckerman number using System; class GFG{ // Function to get product of digits static int getProduct( int n) { int product = 1; while (n != 0) { product = product * (n % 10); n = n / 10; } return product; } // Function to check if N is an // Zuckerman number static bool isZuckerman( int n) { return n % getProduct(n) == 0; } // Driver code public static void Main(String[] args) { int n = 115; if (isZuckerman(n)) { Console.WriteLine( "Yes" ); } else { Console.WriteLine( "No" ); } } } // This code is contributed by Rohit_ranjan |
Javascript
<script> // Javascript implementation to check if N // is a Zuckerman number // Function to get product of digits function getProduct( n) { let product = 1; while (n != 0) { product = product * (n % 10); n = parseInt(n / 10); } return product; } // Function to check if N is an // Zuckerman number function isZuckerman( n) { return n % getProduct(n) == 0; } // Driver code let n = 115; if (isZuckerman(n)) { document.write( "Yes" ); } else { document.write( "No" ); } // This code is contributed by todaysgaurav </script> |
Yes
Time Complexity: O(log10n)
References: OEIS
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!