Thursday, January 2, 2025
Google search engine
HomeData Modelling & AIXOR of all Prime numbers in an Array at positions divisible by...

XOR of all Prime numbers in an Array at positions divisible by K

Given an array arr of integers of size N and an integer K, the task is to find the XOR of all the numbers which are prime and at a position divisible by K.

Examples: 

Input: arr[] = {2, 3, 5, 7, 11, 8}, K = 2 
Output:
Explanation: 
Positions which are divisible by K are 2, 4, 6 and the elements are 3, 7, 8. 
3 and 7 are primes among these. 
Therefore XOR = 3 ^ 7 = 4 

Input: arr[] = {1, 2, 3, 4, 5}, K = 3 
Output:
 

Naive Approach: Traverse the array and for every position i which is divisible by k, check if it is prime or not. If it is a prime then compute the XOR of this number with the previous answer.

Efficient Approach: An efficient approach is to use Sieve Of Eratosthenes. Sieve array can be used to check a number is prime or not in O(1) time. 

Below is the implementation of the above approach:  

C++




// C++ program to find XOR of
// all Prime numbers in an Array
// at positions divisible by K
 
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000005
 
void SieveOfEratosthenes(vector<bool>& prime)
{
    // 0 and 1 are not prime numbers
    prime[1] = false;
    prime[0] = false;
 
    for (int p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2;
                 i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the required XOR
void prime_xor(int arr[], int n, int k)
{
 
    vector<bool> prime(MAX, true);
 
    SieveOfEratosthenes(prime);
 
    // To store XOR of the primes
    long long int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If the number is a prime
        if (prime[arr[i]]) {
 
            // If index is divisible by k
            if ((i + 1) % k == 0) {
                ans ^= arr[i];
            }
        }
    }
 
    // Print the xor
    cout << ans << endl;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 3, 5, 7, 11, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int K = 2;
 
    // Function call
    prime_xor(arr, n, K);
 
    return 0;
}


Java




// Java program to find XOR of
// all Prime numbers in an Array
// at positions divisible by K
class GFG {
 
    static int MAX = 1000005;
    static boolean prime[] = new boolean[MAX];
     
    static void SieveOfEratosthenes(boolean []prime)
    {
        // 0 and 1 are not prime numbers
        prime[1] = false;
        prime[0] = false;
     
        for (int p = 2; p * p < MAX; p++) {
     
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
     
                // Update all multiples of p
                for (int i = p * 2;i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
     
    // Function to find the required XOR
    static void prime_xor(int arr[], int n, int k)
    {
         
        for(int i = 0; i < MAX; i++)
            prime[i] = true;
     
        SieveOfEratosthenes(prime);
     
        // To store XOR of the primes
        int ans = 0;
     
        // Traverse the array
        for (int i = 0; i < n; i++) {
     
            // If the number is a prime
            if (prime[arr[i]]) {
     
                // If index is divisible by k
                if ((i + 1) % k == 0) {
                    ans ^= arr[i];
                }
            }
        }
     
        // Print the xor
        System.out.println(ans);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 2, 3, 5, 7, 11, 8 };
        int n = arr.length;
        int K = 2;
     
        // Function call
        prime_xor(arr, n, K);
     
    }
}
 
// This code is contributed by Yash_R


Python3




# Python3 program to find XOR of
# all Prime numbers in an Array
# at positions divisible by K
MAX = 1000005
 
def SieveOfEratosthenes(prime) :
 
    # 0 and 1 are not prime numbers
    prime[1] = False;
    prime[0] = False;
 
    for p in range(2, int(MAX ** (1/2))) :
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True) :
 
            # Update all multiples of p
            for i in range(p * 2, MAX, p) :
                prime[i] = False;
 
# Function to find the required XOR
def prime_xor(arr, n, k) :
 
    prime = [True]*MAX ;
 
    SieveOfEratosthenes(prime);
 
    # To store XOR of the primes
    ans = 0;
 
    # Traverse the array
    for i in range(n) :
 
        # If the number is a prime
        if (prime[arr[i]]) :
 
            # If index is divisible by k
            if ((i + 1) % k == 0) :
                ans ^= arr[i];
 
    # Print the xor
    print(ans);
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 2, 3, 5, 7, 11, 8 ];
    n = len(arr);
    K = 2;
 
    # Function call
    prime_xor(arr, n, K);
 
# This code is contributed by Yash_R


C#




// C# program to find XOR of
// all Prime numbers in an Array
// at positions divisible by K
using System;
 
class GFG {
 
    static int MAX = 1000005;
    static bool []prime = new bool[MAX];
     
    static void SieveOfEratosthenes(bool []prime)
    {
        // 0 and 1 are not prime numbers
        prime[1] = false;
        prime[0] = false;
     
        for (int p = 2; p * p < MAX; p++) {
     
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
     
                // Update all multiples of p
                for (int i = p * 2;i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
     
    // Function to find the required XOR
    static void prime_xor(int []arr, int n, int k)
    {
         
        for(int i = 0; i < MAX; i++)
            prime[i] = true;
     
        SieveOfEratosthenes(prime);
     
        // To store XOR of the primes
        int ans = 0;
     
        // Traverse the array
        for (int i = 0; i < n; i++) {
     
            // If the number is a prime
            if (prime[arr[i]]) {
     
                // If index is divisible by k
                if ((i + 1) % k == 0) {
                    ans ^= arr[i];
                }
            }
        }
     
        // Print the xor
        Console.WriteLine(ans);
    }
     
    // Driver code
    public static void Main (string[] args)
    {
        int []arr = { 2, 3, 5, 7, 11, 8 };
        int n = arr.Length;
        int K = 2;
     
        // Function call
        prime_xor(arr, n, K);
     
    }
}
 
// This code is contributed by Yash_R


Javascript




<script>
 
// Javascript program to find XOR of
// all Prime numbers in an Array
// at positions divisible by K
const MAX = 1000005;
 
function SieveOfEratosthenes(prime)
{
     
    // 0 and 1 are not prime numbers
    prime[1] = false;
    prime[0] = false;
 
    for(let p = 2; p * p < MAX; p++)
    {
         
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
             
            // Update all multiples of p
            for(let i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the required XOR
function prime_xor(arr, n, k)
{
    let prime = new Array(MAX).fill(true);
 
    SieveOfEratosthenes(prime);
 
    // To store XOR of the primes
    let ans = 0;
 
    // Traverse the array
    for(let i = 0; i < n; i++)
    {
         
        // If the number is a prime
        if (prime[arr[i]])
        {
             
            // If index is divisible by k
            if ((i + 1) % k == 0)
            {
                ans ^= arr[i];
            }
        }
    }
     
    // Print the xor
    document.write(ans);
}
 
// Driver code
let arr = [ 2, 3, 5, 7, 11, 8 ];
let n = arr.length;
let K = 2;
 
// Function call
prime_xor(arr, n, K);
 
// This code is contributed by subham348
 
</script>


Time Complexity: O(N log (log N))

Auxiliary Space:  O(?n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
16 Nov, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments