Given N jobs where every job is represented by following three elements of it.
1. Start Time
2. Finish Time
3. Profit or Value Associated
Find the maximum profit subset of jobs such that no two jobs in the subset overlap.
Examples:
Input: Number of Jobs n = 4 Job Details {Start Time, Finish Time, Profit} Job 1: {1, 2, 50} Job 2: {3, 5, 20} Job 3: {6, 19, 100} Job 4: {2, 100, 200} Output: Job 1: {1, 2, 50} Job 4: {2, 100, 200} Explanation: We can get the maximum profit by scheduling jobs 1 and 4 and maximum profit is 250.
In previous post, we have discussed about Weighted Job Scheduling problem. We discussed a DP solution where we basically includes or excludes current job. In this post, another interesting DP solution is discussed where we also print the Jobs. This problem is a variation of standard Longest Increasing Subsequence (LIS) problem. We need a slight change in the Dynamic Programming solution of LIS problem.
We first need to sort jobs according to start time. Let job[0..n-1] be the array of jobs after sorting. We define vector L such that L[i] is itself is a vector that stores Weighted Job Scheduling of job[0..i] that ends with job[i]. Therefore for an index i, L[i] can be recursively written as –
L[0] = {job[0]} L[i] = {MaxSum(L[j])} + job[i] where j < i and job[j].finish <= job[i].start = job[i], if there is no such j
For example, consider pairs {3, 10, 20}, {1, 2, 50}, {6, 19, 100}, {2, 100, 200}
After sorting we get, {1, 2, 50}, {2, 100, 200}, {3, 10, 20}, {6, 19, 100} Therefore, L[0]: {1, 2, 50} L[1]: {1, 2, 50} {2, 100, 200} L[2]: {1, 2, 50} {3, 10, 20} L[3]: {1, 2, 50} {6, 19, 100}
We choose the vector with highest profit. In this case, L[1].
Below is the implementation of the above idea –
C++
// C++ program for weighted job scheduling using LIS #include <iostream> #include <vector> #include <algorithm> using namespace std; // A job has start time, finish time and profit. struct Job { int start, finish, profit; }; // Utility function to calculate sum of all vector // elements int findSum(vector<Job> arr) { int sum = 0; for ( int i = 0; i < arr.size(); i++) sum += arr[i].profit; return sum; } // comparator function for sort function int compare(Job x, Job y) { return x.start < y.start; } // The main function that finds the maximum possible // profit from given array of jobs void findMaxProfit(vector<Job> &arr) { // Sort arr[] by start time. sort(arr.begin(), arr.end(), compare); // L[i] stores Weighted Job Scheduling of // job[0..i] that ends with job[i] vector<vector<Job>> L(arr.size()); // L[0] is equal to arr[0] L[0].push_back(arr[0]); // start from index 1 for ( int i = 1; i < arr.size(); i++) { // for every j less than i for ( int j = 0; j < i; j++) { // L[i] = {MaxSum(L[j])} + arr[i] where j < i // and arr[j].finish <= arr[i].start if ((arr[j].finish <= arr[i].start) && (findSum(L[j]) > findSum(L[i]))) L[i] = L[j]; } L[i].push_back(arr[i]); } vector<Job> maxChain; // find one with max profit for ( int i = 0; i < L.size(); i++) if (findSum(L[i]) > findSum(maxChain)) maxChain = L[i]; for ( int i = 0; i < maxChain.size(); i++) cout << "(" << maxChain[i].start << ", " << maxChain[i].finish << ", " << maxChain[i].profit << ") " ; } // Driver Function int main() { Job a[] = { {3, 10, 20}, {1, 2, 50}, {6, 19, 100}, {2, 100, 200} }; int n = sizeof (a) / sizeof (a[0]); vector<Job> arr(a, a + n); findMaxProfit(arr); return 0; } |
Java
// Java program for weighted job // scheduling using LIS import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; class Graph{ // A job has start time, finish time // and profit. static class Job { int start, finish, profit; public Job( int start, int finish, int profit) { this .start = start; this .finish = finish; this .profit = profit; } }; // Utility function to calculate sum of all // ArrayList elements static int findSum(ArrayList<Job> arr) { int sum = 0 ; for ( int i = 0 ; i < arr.size(); i++) sum += arr.get(i).profit; return sum; } // The main function that finds the maximum // possible profit from given array of jobs static void findMaxProfit(ArrayList<Job> arr) { // Sort arr[] by start time. Collections.sort(arr, new Comparator<Job>() { @Override public int compare(Job x, Job y) { return x.start - y.start; } }); // sort(arr.begin(), arr.end(), compare); // L[i] stores Weighted Job Scheduling of // job[0..i] that ends with job[i] ArrayList<ArrayList<Job>> L = new ArrayList<>(); for ( int i = 0 ; i < arr.size(); i++) { L.add( new ArrayList<>()); } // L[0] is equal to arr[0] L.get( 0 ).add(arr.get( 0 )); // Start from index 1 for ( int i = 1 ; i < arr.size(); i++) { // For every j less than i for ( int j = 0 ; j < i; j++) { // L[i] = {MaxSum(L[j])} + arr[i] where j < i // and arr[j].finish <= arr[i].start if ((arr.get(j).finish <= arr.get(i).start) && (findSum(L.get(j)) > findSum(L.get(i)))) { ArrayList<Job> copied = new ArrayList<>( L.get(j)); L.set(i, copied); } } L.get(i).add(arr.get(i)); } ArrayList<Job> maxChain = new ArrayList<>(); // Find one with max profit for ( int i = 0 ; i < L.size(); i++) if (findSum(L.get(i)) > findSum(maxChain)) maxChain = L.get(i); for ( int i = 0 ; i < maxChain.size(); i++) { System.out.printf( "(%d, %d, %d)\n" , maxChain.get(i).start, maxChain.get(i).finish, maxChain.get(i).profit); } } // Driver code public static void main(String[] args) { Job[] a = { new Job( 3 , 10 , 20 ), new Job( 1 , 2 , 50 ), new Job( 6 , 19 , 100 ), new Job( 2 , 100 , 200 ) }; ArrayList<Job> arr = new ArrayList<>( Arrays.asList(a)); findMaxProfit(arr); } } // This code is contributed by sanjeev2552 |
Javascript
// JavaScript program for weighted job scheduling using LIS // A job has start time, finish time and profit. function Job(start, finish, profit) { this .start = start; this .finish = finish; this .profit = profit; } // Utility function to calculate sum of all vector // elements function findSum(arr) { let sum = 0; for (let i = 0; i < arr.length; i++) { sum += arr[i].profit; } return sum; } // comparator function for sort function function compare(x, y) { return x.start < y.start; } // The main function that finds the maximum possible // profit from given array of jobs function findMaxProfit(arr) { // Sort arr[] by start time. arr.sort(compare); // L[i] stores Weighted Job Scheduling of // job[0..i] that ends with job[i] let L = new Array(arr.length).fill([]); // L[0] is equal to arr[0] L[0] = [arr[0]]; // start from index 1 for (let i = 1; i < arr.length; i++) { // for every j less than i for (let j = 0; j < i; j++) { // L[i] = {MaxSum(L[j])} + arr[i] where j < i // and arr[j].finish <= arr[i].start if (arr[j].finish <= arr[i].start && findSum(L[j]) > findSum(L[i])) { L[i] = L[j]; } } L[i].push(arr[i]); } let maxChain = []; // find one with max profit for (let i = 0; i < L.length; i++) { if (findSum(L[i]) > findSum(maxChain)) { maxChain = L[i]; } } for (let i = 0; i < maxChain.length; i++) { console.log( "(" + maxChain[i].start + ", " + maxChain[i].finish + ", " + maxChain[i].profit + ") " ); } } // Driver Function let a = [ new Job(3, 10, 20), new Job(1, 2, 50), new Job(2, 100, 200), ]; findMaxProfit(a); |
C#
using System; using System.Collections.Generic; using System.Linq; public class Graph { // A job has start time, finish time // and profit. public class Job { public int start, finish, profit; public Job( int start, int finish, int profit) { this .start = start; this .finish = finish; this .profit = profit; } }; // Utility function to calculate sum of all // ArrayList elements public static int FindSum(List<Job> arr) { int sum = 0; for ( int i = 0; i < arr.Count; i++) sum += arr.ElementAt(i).profit; return sum; } // The main function that finds the maximum // possible profit from given array of jobs public static void FindMaxProfit(List<Job> arr) { // Sort arr[] by start time. arr.Sort((x, y) => x.start.CompareTo(y.start)); // L[i] stores Weighted Job Scheduling of // job[0..i] that ends with job[i] List<List<Job>> L = new List<List<Job>>(); for ( int i = 0; i < arr.Count; i++) { L.Add( new List<Job>()); } // L[0] is equal to arr[0] L[0].Add(arr[0]); // Start from index 1 for ( int i = 1; i < arr.Count; i++) { // For every j less than i for ( int j = 0; j < i; j++) { // L[i] = {MaxSum(L[j])} + arr[i] where j < i // and arr[j].finish <= arr[i].start if ((arr[j].finish <= arr[i].start) && (FindSum(L[j]) > FindSum(L[i]))) { List<Job> copied = new List<Job>( L[j]); L[i] = copied; } } L[i].Add(arr[i]); } List<Job> maxChain = new List<Job>(); // Find one with max profit for ( int i = 0; i < L.Count; i++) if (FindSum(L[i]) > FindSum(maxChain)) maxChain = L[i]; for ( int i = 0; i < maxChain.Count; i++) { Console.WriteLine( "({0}, {1}, {2})" , maxChain[i].start, maxChain[i].finish, maxChain[i].profit); } } // Driver code public static void Main(String[] args) { Job[] a = { new Job(3, 10, 20), new Job(1, 2, 50), new Job(6, 19, 100), new Job(2, 100, 200) }; List<Job> arr = new List<Job>(a); FindMaxProfit(arr); } } |
Python3
# Python program for weighted job scheduling using LIS import sys # A job has start time, finish time and profit. class Job: def __init__( self , start, finish, profit): self .start = start self .finish = finish self .profit = profit # Utility function to calculate sum of all vector elements def findSum(arr): sum = 0 for i in range ( len (arr)): sum + = arr[i].profit return sum # comparator function for sort function def compare(x, y): if x.start < y.start: return - 1 elif x.start = = y.start: return 0 else : return 1 # The main function that finds the maximum possible profit from given array of jobs def findMaxProfit(arr): # Sort arr[] by start time. arr.sort(key = lambda x: x.start) # L[i] stores Weighted Job Scheduling of job[0..i] that ends with job[i] L = [[] for _ in range ( len (arr))] # L[0] is equal to arr[0] L[ 0 ].append(arr[ 0 ]) # start from index 1 for i in range ( 1 , len (arr)): # for every j less than i for j in range (i): # L[i] = {MaxSum(L[j])} + arr[i] where j < i # and arr[j].finish <= arr[i].start if arr[j].finish < = arr[i].start and findSum(L[j]) > findSum(L[i]): L[i] = L[j][:] L[i].append(arr[i]) maxChain = [] # find one with max profit for i in range ( len (L)): if findSum(L[i]) > findSum(maxChain): maxChain = L[i] for i in range ( len (maxChain)): print ( "({}, {}, {})" . format ( maxChain[i].start, maxChain[i].finish, maxChain[i].profit), end = ' ' ) # Driver Function if __name__ = = "__main__" : a = [Job( 3 , 10 , 20 ), Job( 1 , 2 , 50 ), Job( 6 , 19 , 100 ), Job( 2 , 100 , 200 )] findMaxProfit(a) |
(1, 2, 50) (2, 100, 200)
We can further optimize the above DP solution by removing findSum() function. Instead, we can maintain another vector/array to store sum of maximum profit possible till job i. The implementation can be seen here.
Time complexity of above Dynamic Programming solution is O(n2) where n is the number of Jobs.
Auxiliary space used by the program is O(n2).
This article is contributed by Aditya Goel. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!