Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIVolume of largest right circular cylinder within a Sphere

Volume of largest right circular cylinder within a Sphere

Given a sphere of radius R           . The task is to find volume of the biggest right circular cylinder that can be inscribed within it.
Examples
 

Input : R = 4
Output : 77.3495


Input : R = 5
Output : 151.073

 

 

Approach
let r be the radius of the right circular cylinder, and h be it’s height.
Volume of the cylinder, V = ?*r2*h
Also, r2 = R2 – h2 
or, V = ?*(R2 – h2)*h 
or, dV/dh = ?*(R2 – 3*h2)
Setting it to zero, we get h = R/?3 
So, Vmax = 2?R3/3?3 
Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest right circular cylinder
// that can be fit within a sphere
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest right circular cylinder
float cyl(float R)
{
 
    // radius cannot be negative
    if (R < 0)
        return -1;
 
    // volume of cylinder
    float V = (2 * 3.14 * pow(R, 3)) / (3 * sqrt(3));
    return V;
}
 
// Driver code
int main()
{
    float R = 4;
 
    cout << cyl(R) << endl;
 
    return 0;
}


Java




// Java Program to find the biggest
// right circular cylinder that can
// be fit within a sphere
import java.io.*;
 
class GFG
{
 
// Function to find the biggest
// right circular cylinder
static float cyl(float R)
{
 
    // radius cannot be negative
    if (R < 0)
        return -1;
 
    // volume of cylinder
    float V = (float)((2 * 3.14 * Math.pow(R, 3)) /
                      (3 * Math.sqrt(3)));
    return V;
}
 
// Driver code
public static void main (String[] args)
{
    float R = 4;
 
    System.out.print( cyl(R));
}
}
 
// This code is contributed by anuj_67..


Python 3




# Python 3 Program to find the biggest
# right circular cylinder that can be
# fit within a sphere
import math
 
# Function to find the biggest right
# circular cylinder
def cyl(R):
     
    # radius cannot be negative
    if (R < 0):
        return -1
 
    # volume of cylinder
    V = ((2 * 3.14 * math.pow(R, 3)) /
                (3 * math.sqrt(3)));
    return float(V)
 
# Driver code
R = 4
print(cyl(R))
 
# This code is contributed
# by PrinciRaj1992


C#




// C# Program to find the biggest
// right circular cylinder that can
// be fit within a sphere
using System;
 
class GFG
{
 
// Function to find the biggest
// right circular cylinder
static float cyl(float R)
{
 
    // radius cannot be negative
    if (R < 0)
        return -1;
 
    // volume of cylinder
    float V = (float)((2 * 3.14 * Math.Pow(R, 3)) /
                             (3 * Math.Sqrt(3)));
    return V;
}
 
// Driver code
public static void Main ()
{
    float R = 4;
 
    Console.WriteLine( cyl(R));
}
}
 
// This code is contributed by shs


PHP




<?php
// PHP Program to find the biggest right circular cylinder
// that can be fit within a sphere
 
 
 
// Function to find the biggest right circular cylinder
function cyl($R)
{
 
    // radius cannot be negative
    if ($R < 0)
        return -1;
 
    // volume of cylinder
    $V = (2 * 3.14 * pow($R, 3)) / (3 * sqrt(3));
    return $V;
}
 
// Driver code
    $R = 4;
 
    echo cyl($R);
 
// This code is contributed by shs
 
?>


Javascript




<script>
 
// javascript Program to find the biggest
// right circular cylinder that can
// be fit within a sphere
 
// Function to find the biggest
// right circular cylinder
function cyl(R)
{
 
    // radius cannot be negative
    if (R < 0)
        return -1;
 
    // volume of cylinder
    var V = ((2 * 3.14 * Math.pow(R, 3)) /
                      (3 * Math.sqrt(3)));
    return V;
}
 
// Driver code
var R = 4;
 
document.write( cyl(R).toFixed(4));
 
// This code contributed by shikhasingrajput
 
</script>


Output: 

77.3495

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments