Friday, January 10, 2025
Google search engine
HomeData Modelling & AIVolume of biggest sphere within a right circular cylinder

Volume of biggest sphere within a right circular cylinder

Given a right circular cylinder of radius r   and height h   . The task is to find the radius of the biggest sphere that can be inscribed within it.
Examples
 

Input : r = 4, h = 8
Output : 4

Input : r = 5, h= 10
Output :5

 

Approach: From the diagram, it is clear that the radius of the sphere will be clearly equal to the base radius of cylinder.
So, R = r
Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest sphere
// that can be fit within a right circular cylinder
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest sphere
float sph(float r, float h)
{
 
    // radius and height cannot be negative
    if (r < 0 && h < 0)
        return -1;
 
    // radius of sphere
    float R = r;
    return R;
}
 
// Driver code
int main()
{
    float r = 4, h = 8;
    cout << sph(r, h) << endl;
    return 0;
}


Java




// Java Program to find the biggest
// sphere that can be fit within a
// right circular cylinder
import java.io.*;
 
class GFG
{
 
// Function to find the biggest sphere
static float sph(float r, float h)
{
 
    // radius and height cannot
    // be negative
    if (r < 0 && h < 0)
        return -1;
 
    // radius of sphere
    float R = r;
    return R;
}
 
// Driver code
public static void main (String[] args)
{
    float r = 4, h = 8;
    System.out.println(sph(r, h));
}
}
 
// This code is contributed
// by inder_verma


Python3




# Python 3 Program to find the biggest
# sphere that can be fit within a right
# circular cylinder
 
# Function to find the biggest sphere
def sph(r, h):
     
    # radius and height cannot
    # be negative
    if (r < 0 and h < 0):
        return -1
 
    # radius of sphere
    R = r
    return float(R)
 
# Driver code
r, h = 4, 8
print(sph(r, h))
 
# This code is contributed
# by PrinciRaj1992


C#




// C# Program to find the biggest
// sphere that can be fit within a
// right circular cylinder
using System;
 
class GFG
{
 
// Function to find the biggest sphere
static float sph(float r, float h)
{
 
    // radius and height cannot
    // be negative
    if (r < 0 && h < 0)
        return -1;
 
    // radius of sphere
    float R = r;
    return R;
}
 
// Driver code
public static void Main ()
{
    float r = 4, h = 8;
    Console.WriteLine(sph(r, h));
}
}
 
// This code is contributed
// by shs..


PHP




<?php
    // PHP Program to find the biggest sphere
// that can be fit within a right circular cylinder
 
// Function to find the biggest sphere
function sph($r, $h)
{
 
    // radius and height cannot be negative
    if ($r < 0 && $h < 0)
        return -1;
 
    // radius of sphere
    $R = $r;
    return $R;
}
 
// Driver code
 
    $r = 4 ;$h = 8;
    echo sph($r, $h);
 
// This code is contributed
// by shs..
?>


Javascript




<script>
// javascript Program to find the biggest
// sphere that can be fit within a
// right circular cylinder
 
// Function to find the biggest sphere
function sph(r , h)
{
 
    // radius and height cannot
    // be negative
    if (r < 0 && h < 0)
        return -1;
 
    // radius of sphere
    var R = r;
    return R;
}
 
// Driver code
var r = 4, h = 8;
document.write(sph(r, h));
 
// This code is contributed by shikhasingrajput
</script>


Output: 

4

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments