Given a singly linked list containing N nodes, the task is to perform the following operations on the Fibonacci nodes present in it:
- Print all Fibonacci nodes present in the singly linked list.
- Find the total count of Fibonacci nodes present in the singly linked list.
- Find the minimum and the maximum Fibonacci nodes.
- Remove all the Fibonacci nodes from the singly linked list.
Examples:
Input: LL = 15 -> 16 -> 8 -> 6 -> 13
Output:
Fibonacci nodes = 8, 13
Number of Fibonacci nodes = 2
Minimum Fibonacci nodes in the list = 8
Maximum Fibonacci nodes in the list = 13
List after deleting Fibonacci nodes = 15 -> 16 -> 6
Input: LL = 5 -> 3 -> 4 -> 2 -> 9
Output:
Fibonacci nodes = 5, 3, 2
Number of Fibonacci nodes = 3
Minimum Fibonacci nodes in the list = 2
Maximum Fibonacci nodes in the list = 5
List after deleting Fibonacci nodes = 4 -> 9
Approach: The idea is to use hashing to precompute and store the Fibonacci nodes up to the maximum value in the Linked list, to make checking easy and efficient (in O(1) time).
- Traverse through the entire singly linked list and obtain the maximum value in the list.
- Now, build a hash table containing all the Fibonacci nodes less than or equal to the maximum value in the singly linked list.
After performing the above precomputation, we can check if a number is a Fibonacci or not in constant time. Therefore, to perform the above operations, the following approach is used:
- Print the Fibonacci nodes: Traverse through the linked list and check if the number is a Fibonacci value or not. If it is, then print it.
- Count the number of Fibonacci nodes: To count the number of Fibonacci nodes in the linked list, we traverse through the linked list and check if the number is a Fibonacci value or not.
- Find the minimum and the maximum Fibonacci nodes: Traverse through the linked list and check if the value at a node is a Fibonacci or not. If yes:
- If the current node’s value is greater than max, then assign the current node’s value to max.
- If the current node’s value is less than min, then assign the current node’s value to min.
- Delete the Fibonacci nodes: To delete the Fibonacci values, traverse through the linked list and if the data is a Fibonacci, then delete the node containing the data using this approach.
Below is the implementation of the above approach:
C++
// C++ implementation to perform the // operations on Fibonacci nodes // of a Singly Linked list #include <bits/stdc++.h> using namespace std; set< int > hashmap; // Node of the singly linked list struct Node { int data; Node* next; }; // Function to insert a node at the beginning // of the singly Linked List void push(Node** head_ref, int new_data) { // Allocate a new node Node* new_node = new Node; // Insert the data new_node->data = new_data; new_node->next = (*head_ref); // Move the head to point the new node (*head_ref) = new_node; } // Function to delete a node in a SLL // head_ref --> pointer to head node pointer. // del --> pointer to node to be deleted void deleteNode(Node** head_ref, Node* del) { // Base case struct Node* temp = *head_ref; if (*head_ref == NULL || del == NULL) return ; // If the node to be deleted is // the head node if (*head_ref == del){ *head_ref = del->next; return ; } // Traverse list till not found // delete node while (temp->next != del) { temp = temp->next; } // Copy address of node temp->next = del->next; return ; } // Function that returns the largest element // from the linked list. int largestElement( struct Node* head_ref) { // Declare a max variable and // initialize it with INT_MIN value. // INT_MIN is integer type and // its value is -32767 or less. int max = INT_MIN; Node* head = head_ref; // Loop to iterate the linked list while (head != NULL) { // If max is less than head->data then // assign value of head->data to max // otherwise node point to next node. if (max < head->data) max = head->data; head = head->next; } return max; } // Function to create a hash table // to check Fibonacci nodes void createHash( int maxElement) { // Insert the first two // elements in the hash int prev = 0, curr = 1; hashmap.insert(prev); hashmap.insert(curr); // Add the elements until the max element // by using the previous two numbers while (curr <= maxElement) { int temp = curr + prev; hashmap.insert(temp); prev = curr; curr = temp; } } // Function to print the Fibonacci // nodes in a linked list int printFibonacci(Node** head_ref) { int count = 0; Node* ptr = *head_ref; cout << "Fibonacci nodes = " ; while (ptr != NULL) { // If current node is Fibonacci if (hashmap.find(ptr->data) != hashmap.end()) { // Update count cout << ptr->data << " " ; } ptr = ptr->next; } cout << endl; return 0; } // Function to find the count of Fibonacci // nodes in a linked list int countFibonacci(Node** head_ref) { int count = 0; Node* ptr = *head_ref; while (ptr != NULL) { // If current node is Fibonacci if (hashmap.find(ptr->data) != hashmap.end()) { // Update count count++; } ptr = ptr->next; } return count; } // Function to find maximum and minimum // fibonacci nodes in a linked list void minmaxFibonacciNodes(Node** head_ref) { // Find the largest node value // in Singly Linked List int maxEle = largestElement(*head_ref); // Creating a set containing // all the Fibonacci nodes // upto the maximum data value // in the Singly Linked List // set<int> hash; // createHash(hash, maxEle); int minimum = INT_MAX; int maximum = INT_MIN; Node* ptr = *head_ref; while (ptr != NULL) { // If current node is fibonacci if (hashmap.find(ptr->data) != hashmap.end()) { // Update minimum minimum = min(minimum, ptr->data); // Update maximum maximum = max(maximum, ptr->data); } ptr = ptr->next; } cout << "Minimum Fibonacci node: " << minimum << endl; cout << "Maximum Fibonacci node: " << maximum << endl; } // Function to delete all the // fibonacci nodes from the // singly linked list void deleteFibonacciNodes(Node** head_ref) { Node* ptr = *head_ref; Node* next; // Iterating through the linked list while (ptr != NULL) { next = ptr->next; // If the node's data is fibonacci, // delete node 'ptr' if (hashmap.find(ptr->data) != hashmap.end()) deleteNode(head_ref, ptr); ptr = next; } } // Function to print nodes in a // given singly linked list void printList(Node* head) { while (head != NULL) { cout << head->data << " " ; head = head->next; } } void operations( struct Node* head) { // Find the largest node value // in Singly Linked List int maxEle = largestElement(head); // Creating a set containing // all Fibonacci nodes // upto the maximum data value // in the Singly Linked List createHash(maxEle); // Print all Fibonacci nodes printFibonacci(&head); // Count of Fibonacci nodes cout << "Count of Fibonacci nodes = " << countFibonacci(&head) << endl; // Minimum and maximum Fibonacci nodes minmaxFibonacciNodes(&head); // Delete Fibonacci nodes deleteFibonacciNodes(&head); cout << "List after deletion: " ; printList(head); } // Driver program int main() { // Start with the empty list Node* head = NULL; // Create the linked list // 15 -> 16 -> 8 -> 6 -> 13 push(&head, 13); push(&head, 6); push(&head, 8); push(&head, 16); push(&head, 8); operations(head); return 0; } |
Java
// Java implementation to perform the // operations on Fibonacci nodes // of a Singly Linked list import java.util.*; class GFG{ static HashSet<Integer> hashmap = new HashSet<Integer>(); // Node of the singly linked list static class Node { int data; Node next; }; // Function to insert a node at the beginning // of the singly Linked List static Node push(Node head_ref, int new_data) { // Allocate a new node Node new_node = new Node(); // Insert the data new_node.data = new_data; new_node.next = head_ref; // Move the head to point the new node head_ref = new_node; return head_ref; } // Function to delete a node in a SLL // head_ref -. pointer to head node pointer. // del -. pointer to node to be deleted static Node deleteNode(Node head_ref, Node del) { // Base case Node temp = head_ref; if (head_ref == null || del == null ) return null ; // If the node to be deleted is // the head node if (head_ref == del) head_ref = del.next; // Traverse list till not found // delete node while (temp.next != del) { temp = temp.next; } // Copy address of node temp.next = del.next; // Finally, free the memory // occupied by del del = null ; return head_ref; } // Function that returns the largest element // from the linked list. static int largestElement(Node head_ref) { // Declare a max variable and // initialize it with Integer.MIN_VALUE value. // Integer.MIN_VALUE is integer type and // its value is -32767 or less. int max = Integer.MIN_VALUE; Node head = head_ref; // Loop to iterate the linked list while (head != null ) { // If max is less than head.data then // assign value of head.data to max // otherwise node point to next node. if (max < head.data) max = head.data; head = head.next; } return max; } // Function to create a hash table // to check Fibonacci nodes static void createHash( int maxElement) { // Insert the first two // elements in the hash int prev = 0 , curr = 1 ; hashmap.add(prev); hashmap.add(curr); // Add the elements until the max element // by using the previous two numbers while (curr <= maxElement) { int temp = curr + prev; hashmap.add(temp); prev = curr; curr = temp; } } // Function to print the Fibonacci // nodes in a linked list static int printFibonacci(Node head_ref) { int count = 0 ; Node ptr = head_ref; System.out.print( "Fibonacci nodes = " ); while (ptr != null ) { // If current node is Fibonacci if (hashmap.contains(ptr.data)) { // Update count System.out.print(ptr.data+ " " ); } ptr = ptr.next; } System.out.println(); return 0 ; } // Function to find the count of Fibonacci // nodes in a linked list static int countFibonacci(Node head_ref) { int count = 0 ; Node ptr = head_ref; while (ptr != null ) { // If current node is Fibonacci if (hashmap.contains(ptr.data)) { // Update count count++; } ptr = ptr.next; } return count; } // Function to find maximum and minimum // fibonacci nodes in a linked list static void minmaxFibonacciNodes(Node head_ref) { // Find the largest node value // in Singly Linked List int maxEle = largestElement(head_ref); // Creating a set containing // all the Fibonacci nodes // upto the maximum data value // in the Singly Linked List // HashSet<Integer> hash; // createHash(hash, maxEle); int minimum = Integer.MAX_VALUE; int maximum = Integer.MIN_VALUE; Node ptr = head_ref; while (ptr != null ) { // If current node is fibonacci if (hashmap.contains(ptr.data)) { // Update minimum minimum = Math.min(minimum, ptr.data); // Update maximum maximum = Math.max(maximum, ptr.data); } ptr = ptr.next; } System.out.print( "Minimum Fibonacci node: " + minimum + "\n" ); System.out.print( "Maximum Fibonacci node: " + maximum + "\n" ); } // Function to delete all the // fibonacci nodes from the // singly linked list static Node deleteFibonacciNodes(Node head_ref) { Node ptr = head_ref; Node next; // Iterating through the linked list while (ptr != null ) { next = ptr.next; // If the node's data is fibonacci, // delete node 'ptr' if (hashmap.contains(ptr.data)) deleteNode(head_ref, ptr); ptr = next; } return head_ref; } // Function to print nodes in a // given singly linked list static void printList(Node head) { while (head != null ) { System.out.print(head.data+ " " ); head = head.next; } } static void operations(Node head) { // Find the largest node value // in Singly Linked List int maxEle = largestElement(head); // Creating a set containing // all Fibonacci nodes // upto the maximum data value // in the Singly Linked List createHash(maxEle); // Print all Fibonacci nodes printFibonacci(head); // Count of Fibonacci nodes System.out.print( "Count of Fibonacci nodes = " + countFibonacci(head) + "\n" ); // Minimum and maximum Fibonacci nodes minmaxFibonacciNodes(head); // Delete Fibonacci nodes head = deleteFibonacciNodes(head); System.out.print( "List after deletion: " ); printList(head); } // Driver program public static void main(String[] args) { // Start with the empty list Node head = null ; // Create the linked list // 15.16.8.6.13 head = push(head, 13 ); head = push(head, 6 ); head = push(head, 8 ); head = push(head, 16 ); head = push(head, 15 ); operations(head); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation to perform the # operations on Fibonacci nodes # of a Singly Linked list hashmap = set () # Node of the singly linked list class Node: def __init( self ): self .data = 0 self . next = None # Function to add a node at the beginning # of the singly Linked List def push(head_ref, new_data): # Allocate a new node new_node = Node() # Insert the data new_node.data = new_data; new_node. next = (head_ref); # Move the head to point the new node (head_ref) = new_node; return head_ref # Function to delete a node in a SLL # head_ref -. pointer to head node pointer. # delt -. pointer to node to be deleted def deleteNode(head_ref, delt): # Base case temp = head_ref; if (head_ref = = None or delt = = None ): return ; # If the node to be deleted is # the head node if (head_ref = = delt): head_ref = delt. next ; # Traverse list till not found # delete node while (temp. next ! = delt): temp = temp. next ; # Copy address of node temp. next = delt. next ; # Finally, free the memory # occupied by delt del (delt); return ; # Function that returns the largest element # from the linked list. def largestElement(head_ref): # Declare a max variable and # initialize it with INT_MIN value. # INT_MIN is integer type and # its value is -32767 or less. max = - 10000000 head = head_ref; # Loop to iterate the linked list while (head ! = None ): # If max is less than head.data then # assign value of head.data to max # otherwise node point to next node. if ( max < head.data): max = head.data; head = head. next ; return max ; # Function to create a hash table # to check Fibonacci nodes def createHash(maxElement): # Insert the first two # elements in the hash prev = 0 curr = 1 ; hashmap.add(prev); hashmap.add(curr); # Add the elements until the max element # by using the previous two numbers while (curr < = maxElement): temp = curr + prev; hashmap.add(temp); prev = curr; curr = temp; # Function to print the Fibonacci # nodes in a linked list def printFibonacci(head_ref): count = 0 ; ptr = head_ref print ( "Fibonacci nodes = " ,end = '') while (ptr ! = None ): # If current node is Fibonacci if (ptr.data in hashmap): # Update count print (ptr.data, end = ' ' ) ptr = ptr. next ; print () return 0 ; # Function to find the count of Fibonacci # nodes in a linked list def countFibonacci(head_ref): count = 0 ; ptr = head_ref; while (ptr ! = None ): # If current node is Fibonacci if (ptr.data in hashmap): # Update count count + = 1 ptr = ptr. next ; return count; # Function to find maximum and minimum # fibonacci nodes in a linked list def minmaxFibonacciNodes(head_ref): # Find the largest node value # in Singly Linked List maxEle = largestElement(head_ref); # Creating a set containing # all the Fibonacci nodes # upto the maximum data value # in the Singly Linked List # set<int> hash; # createHash(hash, maxEle); minimum = 100000000 maximum = - 100000000 ptr = head_ref; while (ptr ! = None ): # If current node is fibonacci if (ptr.data in hashmap): # Update minimum minimum = min (minimum, ptr.data); # Update maximum maximum = max (maximum, ptr.data); ptr = ptr. next ; print ( "Minimum Fibonacci node: " + str (minimum)) print ( "Maximum Fibonacci node: " + str (maximum)) # Function to delete all the # fibonacci nodes from the # singly linked list def deleteFibonacciNodes(head_ref): ptr = head_ref; next = None # Iterating through the linked list while (ptr ! = None ): next = ptr. next ; # If the node's data is fibonacci, # delete node 'ptr' if (ptr.data in hashmap): deleteNode(head_ref, ptr); ptr = next ; # Function to print nodes in a # given singly linked list def printList(head): while (head ! = None ): print (head.data, end = ' ' ) head = head. next ; def operations(head): # Find the largest node value # in Singly Linked List maxEle = largestElement(head); # Creating a set containing # all Fibonacci nodes # upto the maximum data value # in the Singly Linked List createHash(maxEle); # Print all Fibonacci nodes printFibonacci(head); # Count of Fibonacci nodes print ( "Count of Fibonacci nodes = " + str (countFibonacci(head))) # Minimum and maximum Fibonacci nodes minmaxFibonacciNodes(head); # Delete Fibonacci nodes deleteFibonacciNodes(head); print ( "List after deletion: " , end = '') printList(head); # Driver program if __name__ = = '__main__' : # Start with the empty list head = None ; # Create the linked list # 15 . 16 . 8 . 6 . 13 head = push(head, 13 ); head = push(head, 6 ); head = push(head, 8 ); head = push(head, 16 ); head = push(head, 15 ); operations(head); # This code is contributed by rutvik_56 |
C#
// C# implementation to perform the // operations on Fibonacci nodes // of a Singly Linked list using System; using System.Collections.Generic; class GFG{ static HashSet< int > hashmap = new HashSet< int >(); // Node of the singly linked list class Node { public int data; public Node next; }; // Function to insert a node at the beginning // of the singly Linked List static Node push(Node head_ref, int new_data) { // Allocate a new node Node new_node = new Node(); // Insert the data new_node.data = new_data; new_node.next = head_ref; // Move the head to point the new node head_ref = new_node; return head_ref; } // Function to delete a node in a SLL // head_ref -. pointer to head node pointer. // del -. pointer to node to be deleted static Node deleteNode(Node head_ref, Node del) { // Base case Node temp = head_ref; if (head_ref == null || del == null ) return null ; // If the node to be deleted is // the head node if (head_ref == del) head_ref = del.next; // Traverse list till not found // delete node while (temp.next != del) { temp = temp.next; } // Copy address of node temp.next = del.next; // Finally, free the memory // occupied by del del = null ; return head_ref; } // Function that returns the largest element // from the linked list. static int largestElement(Node head_ref) { // Declare a max variable and // initialize it with int.MinValue value. // int.MinValue is integer type and // its value is -32767 or less. int max = int .MinValue; Node head = head_ref; // Loop to iterate the linked list while (head != null ) { // If max is less than head.data then // assign value of head.data to max // otherwise node point to next node. if (max < head.data) max = head.data; head = head.next; } return max; } // Function to create a hash table // to check Fibonacci nodes static void createHash( int maxElement) { // Insert the first two // elements in the hash int prev = 0, curr = 1; hashmap.Add(prev); hashmap.Add(curr); // Add the elements until the max element // by using the previous two numbers while (curr <= maxElement) { int temp = curr + prev; hashmap.Add(temp); prev = curr; curr = temp; } } // Function to print the Fibonacci // nodes in a linked list static int printFibonacci(Node head_ref) { Node ptr = head_ref; Console.Write( "Fibonacci nodes = " ); while (ptr != null ) { // If current node is Fibonacci if (hashmap.Contains(ptr.data)) { // Update count Console.Write(ptr.data+ " " ); } ptr = ptr.next; } Console.WriteLine(); return 0; } // Function to find the count of Fibonacci // nodes in a linked list static int countFibonacci(Node head_ref) { int count = 0; Node ptr = head_ref; while (ptr != null ) { // If current node is Fibonacci if (hashmap.Contains(ptr.data)) { // Update count count++; } ptr = ptr.next; } return count; } // Function to find maximum and minimum // fibonacci nodes in a linked list static void minmaxFibonacciNodes(Node head_ref) { // Find the largest node value // in Singly Linked List int maxEle = largestElement(head_ref); // Creating a set containing // all the Fibonacci nodes // upto the maximum data value // in the Singly Linked List // HashSet<int> hash; // createHash(hash, maxEle); int minimum = int .MaxValue; int maximum = int .MinValue; Node ptr = head_ref; while (ptr != null ) { // If current node is fibonacci if (hashmap.Contains(ptr.data)) { // Update minimum minimum = Math.Min(minimum, ptr.data); // Update maximum maximum = Math.Max(maximum, ptr.data); } ptr = ptr.next; } Console.Write( "Minimum Fibonacci node: " + minimum + "\n" ); Console.Write( "Maximum Fibonacci node: " + maximum + "\n" ); } // Function to delete all the // fibonacci nodes from the // singly linked list static Node deleteFibonacciNodes(Node head_ref) { Node ptr = head_ref; Node next; // Iterating through the linked list while (ptr != null ) { next = ptr.next; // If the node's data is fibonacci, // delete node 'ptr' if (hashmap.Contains(ptr.data)) deleteNode(head_ref, ptr); ptr = next; } return head_ref; } // Function to print nodes in a // given singly linked list static void printList(Node head) { while (head != null ) { Console.Write(head.data+ " " ); head = head.next; } } static void operations(Node head) { // Find the largest node value // in Singly Linked List int maxEle = largestElement(head); // Creating a set containing // all Fibonacci nodes // upto the maximum data value // in the Singly Linked List createHash(maxEle); // Print all Fibonacci nodes printFibonacci(head); // Count of Fibonacci nodes Console.Write( "Count of Fibonacci nodes = " + countFibonacci(head) + "\n" ); // Minimum and maximum Fibonacci nodes minmaxFibonacciNodes(head); // Delete Fibonacci nodes head = deleteFibonacciNodes(head); Console.Write( "List after deletion: " ); printList(head); } // Driver program public static void Main(String[] args) { // Start with the empty list Node head = null ; // Create the linked list // 15.16.8.6.13 head = push(head, 13); head = push(head, 6); head = push(head, 8); head = push(head, 16); head = push(head, 15); operations(head); } } // This code is contributed by Princi Singh |
Javascript
<script> // javascript implementation to perform the // operations on Fibonacci nodes // of a Singly Linked list var hashmap = new Set(); // Node of the singly linked list class Node { constructor(val) { this .data = val; this .next = null ; } } // Function to insert a node at the beginning // of the singly Linked List function push(head_ref , new_data) { // Allocate a new node var new_node = new Node(); // Insert the data new_node.data = new_data; new_node.next = head_ref; // Move the head to point the new node head_ref = new_node; return head_ref; } // Function to delete a node in a SLL // head_ref -. pointer to head node pointer. // del -. pointer to node to be deleted function deleteNode(head_ref, del) { // Base case var temp = head_ref; if (head_ref == null || del == null ) return null ; // If the node to be deleted is // the head node if (head_ref == del) head_ref = del.next; // Traverse list till not found // delete node while (temp.next != del) { temp = temp.next; } // Copy address of node temp.next = del.next; // Finally, free the memory // occupied by del del = null ; return head_ref; } // Function that returns the largest element // from the linked list. function largestElement(head_ref) { // Declare a max variable and // initialize it with Number.MIN_VALUE value. // Number.MIN_VALUE is integer type and // its value is -32767 or less. var max = Number.MIN_VALUE; var head = head_ref; // Loop to iterate the linked list while (head != null ) { // If max is less than head.data then // assign value of head.data to max // otherwise node point to next node. if (max < head.data) max = head.data; head = head.next; } return max; } // Function to create a hash table // to check Fibonacci nodes function createHash(maxElement) { // Insert the first two // elements in the hash var prev = 0, curr = 1; hashmap.add(prev); hashmap.add(curr); // Add the elements until the max element // by using the previous two numbers while (curr <= maxElement) { var temp = curr + prev; hashmap.add(temp); prev = curr; curr = temp; } } // Function to print the Fibonacci // nodes in a linked list function printFibonacci(head_ref) { var count = 0; var ptr = head_ref; document.write( "Fibonacci nodes = " ); while (ptr != null ) { // If current node is Fibonacci if (hashmap.has(ptr.data)) { // Update count document.write(ptr.data + " " ); } ptr = ptr.next; } document.write( "<br/>" ); return 0; } // Function to find the count of Fibonacci // nodes in a linked list function countFibonacci(head_ref) { var count = 0; var ptr = head_ref; while (ptr != null ) { // If current node is Fibonacci if (hashmap.has(ptr.data)) { // Update count count++; } ptr = ptr.next; } return count; } // Function to find maximum and minimum // fibonacci nodes in a linked list function minmaxFibonacciNodes(head_ref) { // Find the largest node value // in Singly Linked List var maxEle = largestElement(head_ref); // Creating a set containing // all the Fibonacci nodes // upto the maximum data value // in the Singly Linked List // HashSet<Integer> hash; // createHash(hash, maxEle); var minimum = Number.MAX_VALUE; var maximum = Number.MIN_VALUE; var ptr = head_ref; while (ptr != null ) { // If current node is fibonacci if (hashmap.has(ptr.data)) { // Update minimum minimum = Math.min(minimum, ptr.data); // Update maximum maximum = Math.max(maximum, ptr.data); } ptr = ptr.next; } document.write( "Minimum Fibonacci node: " + minimum + "<br/>" ); document.write( "Maximum Fibonacci node: " + maximum + "<br/>" ); } // Function to delete all the // fibonacci nodes from the // singly linked list function deleteFibonacciNodes(head_ref) { var ptr = head_ref; var next; // Iterating through the linked list while (ptr != null ) { next = ptr.next; // If the node's data is fibonacci, // delete node 'ptr' if (hashmap.has(ptr.data)) deleteNode(head_ref, ptr); ptr = next; } return head_ref; } // Function to print nodes in a // given singly linked list function printList(head) { while (head != null ) { document.write(head.data + " " ); head = head.next; } } function operations(head) { // Find the largest node value // in Singly Linked List var maxEle = largestElement(head); // Creating a set containing // all Fibonacci nodes // upto the maximum data value // in the Singly Linked List createHash(maxEle); // Print all Fibonacci nodes printFibonacci(head); // Count of Fibonacci nodes document.write( "Count of Fibonacci nodes = " + countFibonacci(head) + "<br/>" ); // Minimum and maximum Fibonacci nodes minmaxFibonacciNodes(head); // Delete Fibonacci nodes head = deleteFibonacciNodes(head); document.write( "List after deletion: " ); printList(head); } // Driver program // Start with the empty list var head = null ; // Create the linked list // 15.16.8.6.13 head = push(head, 13); head = push(head, 6); head = push(head, 8); head = push(head, 16); head = push(head, 15); operations(head); // This code contributed by gauravrajput1 </script> |
Fibonacci nodes = 8 8 13 Count of Fibonacci nodes = 3 Minimum Fibonacci node: 8 Maximum Fibonacci node: 13 List after deletion: 16 6
Time Complexity: O(N), where N is the number of nodes in the linked list.
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!