Friday, January 10, 2025
Google search engine
HomeData Modelling & AIValidate the Binary Tree Nodes

Validate the Binary Tree Nodes

Given N nodes numbered from 0 to n-1, also given the E number of directed edges, determine whether the given nodes all together form a single binary tree or not.

Examples:

Input: N = 4, edges[][] = [[0 1], [0 2], [2 3]]
Output: true
Explanation: Form a single binary tree with a unique root node.

Input: N = 4, edges[][] = [[0 1], [0 2], [1 3], [2 3]]
Output: false
Explanation: Not form a single binary tree because they contain a cycle.

Approach: To solve the problem follow the below idea:

To determine if the given nodes form a single binary tree, you can use a Depth-First Search (DFS) algorithm to traverse the graph and check for the following conditions:

  • The Graph should be connected
  • There should be exactly one node with an in-degree of 0, which will be the root of the binary tree.
  • Every other node should have an in-degree of 1 , except for the root node, which should have an in-degree of 0.
  • Also for each node the number of childrens should be less than equal to 2.

Steps to Solve the problem:

  • In a binary tree, every node (except the root) should have one parent.
  • We can use an unordered_map called inDegree to store the in-degree of each node.
  • If any node has an in-degree greater than 1, it means it has more than one parent, which violates the binary tree condition rule.
  • Similarly, for each parent node, we need to count the number of children it has.
  • If any node has more than two children, it also violates the binary tree condition. We use another unordered_map called childrenCount to keep track of this.
  • A binary tree should have exactly one root node. We count the number of nodes with an in-degree of 0.
  • If there is more than one such node, it means there is more than one root, which is not allowed in a binary tree.

Below is the implementation of the above idea:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
bool isBinaryTree(int N, vector<vector<int> >& edges)
{
    if (N == 0) {
        return false;
    }
 
    unordered_map<int, int> inDegree;
    unordered_map<int, int> childrenCount;
 
    for (vector<int>& edge : edges) {
        int from = edge[0];
        int to = edge[1];
 
        inDegree[to]++;
        childrenCount[from]++;
 
        if (inDegree[to] > 1 || childrenCount[from] > 2) {
 
            // More than two children or more
            // than one parent, not a binary
            // tree.
            return false;
        }
    }
 
    int rootCount = 0;
    for (int i = 0; i < N; i++) {
        if (inDegree[i] == 0) {
            rootCount++;
            if (rootCount > 1) {
 
                // More than one root, not a
                // binary tree.
                return false;
            }
        }
    }
 
    return rootCount == 1;
}
 
// Drivers code
int main()
{
    int N = 4;
    vector<vector<int> > edges
        = { { 0, 1 }, { 0, 2 }, { 0, 3 } };
 
    // Function Call
    if (isBinaryTree(N, edges))
        cout << "true" << endl;
    else
        cout << "false" << endl;
    return 0;
}


Java




// Java code for the above approach:
 
import java.util.*;
 
class GFG {
    static boolean isBinaryTree(int N, int[][] edges)
    {
        if (N == 0) {
            return false;
        }
 
        Map<Integer, Integer> inDegree = new HashMap<>();
        Map<Integer, Integer> childrenCount
            = new HashMap<>();
 
        for (int[] edge : edges) {
            int from = edge[0];
            int to = edge[1];
 
            inDegree.put(to,
                         inDegree.getOrDefault(to, 0) + 1);
            childrenCount.put(
                from,
                childrenCount.getOrDefault(from, 0) + 1);
 
            if (inDegree.get(to) > 1
                || childrenCount.get(from) > 2) {
 
                // More than two children or more
                // than one parent, not a binary
                // tree.
                return false;
            }
        }
 
        int rootCount = 0;
 
        for (int i = 0; i < N; i++) {
            if (inDegree.getOrDefault(i, 0) == 0) {
                rootCount++;
 
                if (rootCount > 1) {
 
                    // More than one root, not a
                    // binary tree.
                    return false;
                }
            }
        }
 
        return rootCount == 1;
    }
    // Drivers code
    public static void main(String[] args)
    {
        int N = 4;
        int[][] edges = { { 0, 1 }, { 0, 2 }, { 0, 3 } };
 
        // Function Call
        if (isBinaryTree(N, edges)) {
            System.out.println("true");
        }
        else {
            System.out.println("false");
        }
    }
}
 
// This code is contributed by ragul21


Python3




from collections import defaultdict
 
def is_binary_tree(N, edges):
    if N == 0:
        return False
 
    in_degree = defaultdict(int)
    children_count = defaultdict(int)
 
    for edge in edges:
        from_node, to_node = edge
 
        in_degree[to_node] += 1
        children_count[from_node] += 1
 
        if in_degree[to_node] > 1 or children_count[from_node] > 2:
            # More than two children or more than one parent, not a binary tree.
            return False
 
    root_count = 0
    for i in range(N):
        if in_degree[i] == 0:
            root_count += 1
            if root_count > 1:
                # More than one root, not a binary tree.
                return False
 
    return root_count == 1
 
# Driver code
if __name__ == "__main__":
    N = 4
    edges = [[0, 1], [0, 2], [0, 3]]
 
    # Function Call
    if is_binary_tree(N, edges):
        print("true")
    else:
        print("false")
         
# This code is contributed by shivamgupta0987654321


C#




// C# Implementation
 
using System;
using System.Collections.Generic;
 
class Program
{
    static bool IsBinaryTree(int N, int[][] edges)
    {
        if (N == 0)
        {
            return false;
        }
 
        Dictionary<int, int> inDegree = new Dictionary<int, int>();
        Dictionary<int, int> childrenCount = new Dictionary<int, int>();
 
        foreach (int[] edge in edges)
        {
            int from = edge[0];
            int to = edge[1];
 
            if (!inDegree.ContainsKey(to))
            {
                inDegree[to] = 0;
            }
            inDegree[to]++;
 
            if (!childrenCount.ContainsKey(from))
            {
                childrenCount[from] = 0;
            }
            childrenCount[from]++;
 
            if (inDegree[to] > 1 || childrenCount[from] > 2)
            {
                // More than two children or more than one parent, not a binary tree.
                return false;
            }
        }
 
        int rootCount = 0;
 
        for (int i = 0; i < N; i++)
        {
            if (!inDegree.ContainsKey(i) || inDegree[i] == 0)
            {
                rootCount++;
 
                if (rootCount > 1)
                {
                    // More than one root, not a binary tree.
                    return false;
                }
            }
        }
 
        return rootCount == 1;
    }
 
    static void Main(string[] args)
    {
        int N = 4;
        int[][] edges = { new int[] { 0, 1 }, new int[] { 0, 2 }, new int[] { 0, 3 } };
 
        // Function Call
        if (IsBinaryTree(N, edges))
        {
            Console.WriteLine("true");
        }
        else
        {
            Console.WriteLine("false");
        }
    }
}
 
// This code is contributed by Sakshi


Javascript




function GFG(N, edges) {
    if (N === 0) {
        return false;
    }
    const inDegree = new Map();
    const childrenCount = new Map();
    for (const edge of edges) {
        const from = edge[0];
        const to = edge[1];
        inDegree.set(to, (inDegree.get(to) || 0) + 1);
        childrenCount.set(from, (childrenCount.get(from) || 0) + 1);
        if (inDegree.get(to) > 1 || childrenCount.get(from) > 2) {
            // More than two children or more than one parent
            // not a binary tree.
            return false;
        }
    }
    let rootCount = 0;
    for (let i = 0; i < N; i++) {
        if (!inDegree.has(i)) {
            rootCount++;
            if (rootCount > 1) {
                // More than one root, not a binary tree.
                return false;
            }
        }
    }
    return rootCount === 1;
}
// Drivers code
const N = 4;
const edges = [
    [0, 1],
    [0, 2],
    [0, 3]
];
// Function Call
if (GFG(N, edges)) {
    console.log("true");
} else {
    console.log("false");
}


Output

false







Time complexity: O(N + E), where N is the number of nodes and E is the number of edges.
Auxiliar Space: O(N + E), where N is the number of nodes and E is the number of edges.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
06 Dec, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments