Thursday, December 26, 2024
Google search engine
HomeLanguagesUsing dictionary to remap values in Pandas DataFrame columns

Using dictionary to remap values in Pandas DataFrame columns

While working with data in Pandas in Python, we perform a vast array of operations on the data to get the data in the desired form. One of these operations could be that we want to remap the values of a specific column in the DataFrame. Let’s discuss several ways in which we can do that.

Creating Pandas DataFrame to remap values

Given a Dataframe containing data about an event, remap the values of a specific column to a new value.

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the DataFrame
df = pd.DataFrame({'Date': ['10/2/2011', '11/2/2011', '12/2/2011', '13/2/2011'],
                   'Event': ['Music', 'Poetry', 'Theatre', 'Comedy'],
                   'Cost': [10000, 5000, 15000, 2000]})
 
# Print the dataframe
print(df)


Output:

 

Remap values in Pandas columns using replace() function

Now we will remap the values of the ‘Event’ column by their respective codes using replace() function

Python3




# Create a dictionary using which we
# will remap the values
dict = {'Music' : 'M', 'Poetry' : 'P', 'Theatre' : 'T', 'Comedy' : 'C'}
 
# Print the dictionary
print(dict)
 
# Remap the values of the dataframe
df.replace({"Event": dict})


Output : 

 

 

Remap values in Pandas DataFrame columns using map() function 

Now we will remap the values of the ‘Event’ column by their respective codes using map() function

Python3




# Create a dictionary using which we
# will remap the values
dict = {'Music': 'M', 'Poetry': 'P', 'Theatre': 'T', 'Comedy': 'C'}
 
# Print the dictionary
print(dict)
 
# Remap the values of the dataframe
df['Event'] = df['Event'].map(dict)
 
# Print the DataFrame after modification
print(df)


Output: 

 

 

RELATED ARTICLES

Most Popular

Recent Comments