Thursday, September 4, 2025
HomeLanguagesUnderstanding Types of Means | Set 1

Understanding Types of Means | Set 1

It is one of the most important concepts of statistics, a crucial subject to learning Machine Learning. 
 

  • Arithmetic Mean: It is the mathematical expectation of a discrete set of numbers or averages. 
    Denoted by , pronounced as “x-bar”. It is the sum of all the discrete values in the set divided by the total number of values in the set. 
    The formula to calculate the mean of n values – x1, x2, ….. xn 
     

  • Example – 
Sequence = {1, 5, 6, 4, 4}

Sum             = 20
n, Total values = 5
Arithmetic Mean = 20/5 = 4
  • Code – 

Python3




# Arithmetic Mean
 
import statistics
 
# discrete set of numbers
data1 = [1, 5, 6, 4, 4]
 
x = statistics.mean(data1)
 
# Mean
print("Mean is :", x)


  • Output : 
Mean is : 4
  • Trimmed Mean: Arithmetic Mean is influenced by the outliers (extreme values) in the data. So, trimmed mean is used at the time of pre-processing when we are handling such kinds of data in machine learning. 
    It is arithmetic having a variation i.e. it is calculated by dropping a fixed number of sorted values from each end of the sequence of data given and then calculating the mean (average) of the remaining values. 
     

  • Example – 
     
Sequence = {0, 2, 1, 3}
p        = 0.25

Remaining Sequence  = {2, 1}
n, Total values = 2
Mean = 3/2 = 1.5
  • Code – 

Python3




# Trimmed Mean
 
from scipy import stats
 
# discrete set of numbers
data = [0, 2, 1, 3]
 
x = stats.trim_mean(data, 0.25)
 
# Mean
print("Trimmed Mean is :", x)


  • Output : 
Trimmed Mean is : 1.5
  • Weighted Mean: Arithmetic Mean or Trimmed mean is giving equal importance to all the parameters involved. But whenever we are working on machine learning predictions, there is a possibility that some parameter values hold more importance than others, so we assign high weights to the values of such parameters. Also, there can be a chance that our data set has a highly variable value of a parameter, so we assign lesser weights to the values of such parameters. 
     

  • Example – 
Sequence = [0, 2, 1, 3]
Weight   = [1, 0, 1, 1]

Sum (Weight * sequence)  = 0*1 + 2*0 + 1*1 + 3*1
Sum (Weight) = 3
Weighted Mean = 4 / 3 = 1.3333333333333333
  • Code 1 – 

Python3




# Weighted Mean
 
import numpy as np
 
# discrete set of numbers
data = [0, 2, 1, 3]
 
x = np.average(data, weights =[1, 0, 1, 1])
 
# Mean
print("Weighted Mean is :", x)


  • Output 1 : 
Weighted Mean is : 1.3333333333333333
  • Code 2 – 

Python3




# Weighted Mean
 
data = [0, 2, 1, 3]
weights = [1, 0, 1, 1]
 
x = sum(data[i] * weights[i]
    for i in range(len(data))) / sum(weights)
 
 
print ("Weighted Mean is :", x)


  • Output 2 : 
Weighted Mean is : 1.3333333333333333
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32264 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6629 POSTS0 COMMENTS
Nicole Veronica
11799 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11859 POSTS0 COMMENTS
Shaida Kate Naidoo
6749 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6698 POSTS0 COMMENTS
Umr Jansen
6717 POSTS0 COMMENTS