Given a Binary Tree, the task is to find it’s Triple Order Traversal.
Triple Order Traversal is a tree traversal technique in which every node is traversed thrice in the following order:
- Visit the root node
- Traverse the left subtree
- Visit the root node
- Traverse the right subtree
- Visit the root node.
Examples:
Input: A / \ B C / \ \ F D E Output: A B F F F B D D D B A C C E E E C A Input: A / \ B C / \ E D / F Output: A B E F F F E E B D D D B A C C C A
Approach:
Follow the steps below to solve the problem:
- Start the traversal from the root.
- If the current node does not exist, simply return from it.
- Otherwise:
- Print the value of the current node.
- Recursively traverse the left subtree.
- Again, print the current node.
- Recursively traverse the right subtree.
- Again, print the current node.
- Repeat the above steps until all nodes in the tree are visited.
Below is the implementation of the above approach:
C++
// C++ Program to implement triple // order traversal of a binary tree #include <iostream> using namespace std; // Structure of a Node struct node { char data; struct node *left, *right; }; // Function to create new node struct node* newNode( char ch) { // Allocating a new node in the memory. struct node* Node = new node(); Node->data = ch; Node->left = NULL; Node->right = NULL; return Node; } // Function to print Triple Order traversal void tripleOrderTraversal( struct node* root) { if (root) { // Print the current node cout << root->data << " " ; // Traverse left subtree tripleOrderTraversal(root->left); // Print the current node cout << root->data << " " ; // Traverse right subtree tripleOrderTraversal(root->right); // Print the current node cout << root->data << " " ; } } // Driver Code int main() { struct node* root = newNode( 'A' ); root->left = newNode( 'B' ); root->right = newNode( 'C' ); root->left->left = newNode( 'F' ); root->left->right = newNode( 'D' ); root->right->right = newNode( 'E' ); tripleOrderTraversal(root); } |
Java
// Java program to implement triple // order traversal of a binary tree import java.util.*; class GFG{ // Structure of a Node static class node { char data; node left, right; }; // Function to create new node static node newNode( char ch) { // Allocating a new node in the memory. node n = new node(); n.data = ch; n.left = null ; n.right = null ; return n; } // Function to print Triple Order traversal static void tripleOrderTraversal(node root) { if (root != null ) { // Print the current node System.out.print(root.data + " " ); // Traverse left subtree tripleOrderTraversal(root.left); // Print the current node System.out.print(root.data + " " ); // Traverse right subtree tripleOrderTraversal(root.right); // Print the current node System.out.print(root.data + " " ); } } // Driver Code public static void main(String[] args) { node root = newNode( 'A' ); root.left = newNode( 'B' ); root.right = newNode( 'C' ); root.left.left = newNode( 'F' ); root.left.right = newNode( 'D' ); root.right.right = newNode( 'E' ); tripleOrderTraversal(root); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program to implement triple # order traversal of a binary tree # Structure of node class Node: # Initialise the node def __init__( self , ch): self .data = ch self .left = None self .right = None # Function to print the Triple Order Traversal def tripleOrderTraversal(root): if root: # Print the current node print (root.data, end = ' ' ) # Print the left subtree tripleOrderTraversal(root.left) # Print the current node print (root.data, end = ' ' ) # Print the right subtree tripleOrderTraversal(root.right) # Print the current node print (root.data, end = ' ' ) # Driver code root = Node( 'A' ) root.left = Node( 'B' ) root.right = Node( 'C' ) root.left.left = Node( 'F' ) root.left.right = Node( 'D' ) root.right.right = Node( 'E' ) tripleOrderTraversal(root) # This code is contributed by Stuti Pathak |
C#
// C# program to implement triple // order traversal of a binary tree using System; class GFG{ // Structure of a Node public class node { public char data; public node left, right; }; // Function to create new node static node newNode( char ch) { // Allocating a new node in the memory. node n = new node(); n.data = ch; n.left = null ; n.right = null ; return n; } // Function to print Triple Order traversal static void tripleOrderTraversal(node root) { if (root != null ) { // Print the current node Console.Write(root.data + " " ); // Traverse left subtree tripleOrderTraversal(root.left); // Print the current node Console.Write(root.data + " " ); // Traverse right subtree tripleOrderTraversal(root.right); // Print the current node Console.Write(root.data + " " ); } } // Driver Code public static void Main(String[] args) { node root = newNode( 'A' ); root.left = newNode( 'B' ); root.right = newNode( 'C' ); root.left.left = newNode( 'F' ); root.left.right = newNode( 'D' ); root.right.right = newNode( 'E' ); tripleOrderTraversal(root); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // javascript Program to implement triple // order traversal of a binary tree // Structure of a Node class node { constructor() { this .data = 0; this .left = null ; this .right = null ; } }; // Function to create new node function newNode(ch) { // Allocating a new node in the memory. var n = new node(); n.data = ch; n.left = null ; n.right = null ; return n; } // Function to print Triple Order traversal function tripleOrderTraversal(root) { if (root) { // Print the current node document.write( root.data + " " ); // Traverse left subtree tripleOrderTraversal(root.left); // Print the current node document.write( root.data + " " ); // Traverse right subtree tripleOrderTraversal(root.right); // Print the current node document.write( root.data + " " ); } } // Driver Code var root = newNode( 'A' ); root.left = newNode( 'B' ); root.right = newNode( 'C' ); root.left.left = newNode( 'F' ); root.left.right = newNode( 'D' ); root.right.right = newNode( 'E' ); tripleOrderTraversal(root); </script> |
A B F F F B D D D B A C C E E E C A
Time Complexity: O(N), where N is the total number of nodes in the binary tree.
Auxiliary Space: O(N)
Applications: Euler tour of a tree is a modified version of triple order traversal.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!