Sunday, December 29, 2024
Google search engine
HomeData Modelling & AITraveling Salesman Problem using Branch And Bound

Traveling Salesman Problem using Branch And Bound

Given a set of cities and distance between every pair of cities, the problem is to find the shortest possible tour that visits every city exactly once and returns to the starting point.
 

Euler1

For example, consider the graph shown in figure on right side. A TSP tour in the graph is 0-1-3-2-0. The cost of the tour is 10+25+30+15 which is 80.
We have discussed following solutions 
1) Naive and Dynamic Programming 
2) Approximate solution using MST
  
 
Branch and Bound Solution 
As seen in the previous articles, in Branch and Bound method, for current node in tree, we compute a bound on best possible solution that we can get if we down this node. If the bound on best possible solution itself is worse than current best (best computed so far), then we ignore the subtree rooted with the node. 
Note that the cost through a node includes two costs. 
1) Cost of reaching the node from the root (When we reach a node, we have this cost computed) 
2) Cost of reaching an answer from current node to a leaf (We compute a bound on this cost to decide whether to ignore subtree with this node or not).
 

  • In cases of a maximization problem, an upper bound tells us the maximum possible solution if we follow the given node. For example in 0/1 knapsack we used Greedy approach to find an upper bound.
  • In cases of a minimization problem, a lower bound tells us the minimum possible solution if we follow the given node. For example, in Job Assignment Problem, we get a lower bound by assigning least cost job to a worker.

In branch and bound, the challenging part is figuring out a way to compute a bound on best possible solution. Below is an idea used to compute bounds for Travelling salesman problem.
Cost of any tour can be written as below.
 

Cost of a tour T = (1/2) * ∑ (Sum of cost of two edges
                              adjacent to u and in the
                              tour T) 
                   where u ∈ V
For every vertex u, if we consider two edges through it in T,
and sum their costs.  The overall sum for all vertices would
be twice of cost of tour T (We have considered every edge 
twice.)

(Sum of two tour edges adjacent to u) >= (sum of minimum weight
                                          two edges adjacent to
                                          u)

Cost of any tour >=  1/2) * ∑ (Sum of cost of two minimum
                              weight edges adjacent to u) 
                   where u ∈ V

For example, consider the above shown graph. Below are minimum cost two edges adjacent to every node. 
 

Node     Least cost edges   Total cost            
0     (0, 1), (0, 2)            25
1     (0, 1), (1, 3)         35
2    (0, 2), (2, 3)            45
3     (0, 3), (1, 3)            45

Thus a lower bound on the cost of any tour = 
         1/2(25 + 35 + 45 + 45)
       = 75
Refer this for one more example.

Now we have an idea about computation of lower bound. Let us see how to how to apply it state space search tree. We start enumerating all possible nodes (preferably in lexicographical order)
1. The Root Node: Without loss of generality, we assume we start at vertex “0” for which the lower bound has been calculated above.
Dealing with Level 2: The next level enumerates all possible vertices we can go to (keeping in mind that in any path a vertex has to occur only once) which are, 1, 2, 3… n (Note that the graph is complete). Consider we are calculating for vertex 1, Since we moved from 0 to 1, our tour has now included the edge 0-1. This allows us to make necessary changes in the lower bound of the root. 
 

Lower Bound for vertex 1 = 
   Old lower bound - ((minimum edge cost of 0 + 
                    minimum edge cost of 1) / 2) 
                  + (edge cost 0-1)

How does it work? To include edge 0-1, we add the edge cost of 0-1, and subtract an edge weight such that the lower bound remains as tight as possible which would be the sum of the minimum edges of 0 and 1 divided by 2. Clearly, the edge subtracted can’t be smaller than this.
Dealing with other levels: As we move on to the next level, we again enumerate all possible vertices. For the above case going further after 1, we check out for 2, 3, 4, …n. 
Consider lower bound for 2 as we moved from 1 to 1, we include the edge 1-2 to the tour and alter the new lower bound for this node.
 

Lower bound(2) = 
     Old lower bound - ((second minimum edge cost of 1 + 
                         minimum edge cost of 2)/2)
                     + edge cost 1-2)

Note: The only change in the formula is that this time we have included second minimum edge cost for 1, because the minimum edge cost has already been subtracted in previous level. 
 

C++




// C++ program to solve Traveling Salesman Problem
// using Branch and Bound.
#include <bits/stdc++.h>
using namespace std;
const int N = 4;
// final_path[] stores the final solution ie, the
// path of the salesman.
int final_path[N+1];
 
// visited[] keeps track of the already visited nodes
// in a particular path
bool visited[N];
 
// Stores the final minimum weight of shortest tour.
int final_res = INT_MAX;
 
// Function to copy temporary solution to
// the final solution
void copyToFinal(int curr_path[])
{
    for (int i=0; i<N; i++)
        final_path[i] = curr_path[i];
    final_path[N] = curr_path[0];
}
 
// Function to find the minimum edge cost
// having an end at the vertex i
int firstMin(int adj[N][N], int i)
{
    int min = INT_MAX;
    for (int k=0; k<N; k++)
        if (adj[i][k]<min && i != k)
            min = adj[i][k];
    return min;
}
 
// function to find the second minimum edge cost
// having an end at the vertex i
int secondMin(int adj[N][N], int i)
{
    int first = INT_MAX, second = INT_MAX;
    for (int j=0; j<N; j++)
    {
        if (i == j)
            continue;
 
        if (adj[i][j] <= first)
        {
            second = first;
            first = adj[i][j];
        }
        else if (adj[i][j] <= second &&
                 adj[i][j] != first)
            second = adj[i][j];
    }
    return second;
}
 
// function that takes as arguments:
// curr_bound -> lower bound of the root node
// curr_weight-> stores the weight of the path so far
// level-> current level while moving in the search
//         space tree
// curr_path[] -> where the solution is being stored which
//                would later be copied to final_path[]
void TSPRec(int adj[N][N], int curr_bound, int curr_weight,
            int level, int curr_path[])
{
    // base case is when we have reached level N which
    // means we have covered all the nodes once
    if (level==N)
    {
        // check if there is an edge from last vertex in
        // path back to the first vertex
        if (adj[curr_path[level-1]][curr_path[0]] != 0)
        {
            // curr_res has the total weight of the
            // solution we got
            int curr_res = curr_weight +
                    adj[curr_path[level-1]][curr_path[0]];
 
            // Update final result and final path if
            // current result is better.
            if (curr_res < final_res)
            {
                copyToFinal(curr_path);
                final_res = curr_res;
            }
        }
        return;
    }
 
    // for any other level iterate for all vertices to
    // build the search space tree recursively
    for (int i=0; i<N; i++)
    {
        // Consider next vertex if it is not same (diagonal
        // entry in adjacency matrix and not visited
        // already)
        if (adj[curr_path[level-1]][i] != 0 &&
            visited[i] == false)
        {
            int temp = curr_bound;
            curr_weight += adj[curr_path[level-1]][i];
 
            // different computation of curr_bound for
            // level 2 from the other levels
            if (level==1)
              curr_bound -= ((firstMin(adj, curr_path[level-1]) +
                             firstMin(adj, i))/2);
            else
              curr_bound -= ((secondMin(adj, curr_path[level-1]) +
                             firstMin(adj, i))/2);
 
            // curr_bound + curr_weight is the actual lower bound
            // for the node that we have arrived on
            // If current lower bound < final_res, we need to explore
            // the node further
            if (curr_bound + curr_weight < final_res)
            {
                curr_path[level] = i;
                visited[i] = true;
 
                // call TSPRec for the next level
                TSPRec(adj, curr_bound, curr_weight, level+1,
                       curr_path);
            }
 
            // Else we have to prune the node by resetting
            // all changes to curr_weight and curr_bound
            curr_weight -= adj[curr_path[level-1]][i];
            curr_bound = temp;
 
            // Also reset the visited array
            memset(visited, false, sizeof(visited));
            for (int j=0; j<=level-1; j++)
                visited[curr_path[j]] = true;
        }
    }
}
 
// This function sets up final_path[]
void TSP(int adj[N][N])
{
    int curr_path[N+1];
 
    // Calculate initial lower bound for the root node
    // using the formula 1/2 * (sum of first min +
    // second min) for all edges.
    // Also initialize the curr_path and visited array
    int curr_bound = 0;
    memset(curr_path, -1, sizeof(curr_path));
    memset(visited, 0, sizeof(curr_path));
 
    // Compute initial bound
    for (int i=0; i<N; i++)
        curr_bound += (firstMin(adj, i) +
                       secondMin(adj, i));
 
    // Rounding off the lower bound to an integer
    curr_bound = (curr_bound&1)? curr_bound/2 + 1 :
                                 curr_bound/2;
 
    // We start at vertex 1 so the first vertex
    // in curr_path[] is 0
    visited[0] = true;
    curr_path[0] = 0;
 
    // Call to TSPRec for curr_weight equal to
    // 0 and level 1
    TSPRec(adj, curr_bound, 0, 1, curr_path);
}
 
// Driver code
int main()
{
    //Adjacency matrix for the given graph
    int adj[N][N] = { {0, 10, 15, 20},
        {10, 0, 35, 25},
        {15, 35, 0, 30},
        {20, 25, 30, 0}
    };
 
    TSP(adj);
 
    printf("Minimum cost : %d\n", final_res);
    printf("Path Taken : ");
    for (int i=0; i<=N; i++)
        printf("%d ", final_path[i]);
 
    return 0;
}


Java




// Java program to solve Traveling Salesman Problem
// using Branch and Bound.
import java.util.*;
 
class GFG
{
     
    static int N = 4;
 
    // final_path[] stores the final solution ie, the
    // path of the salesman.
    static int final_path[] = new int[N + 1];
 
    // visited[] keeps track of the already visited nodes
    // in a particular path
    static boolean visited[] = new boolean[N];
 
    // Stores the final minimum weight of shortest tour.
    static int final_res = Integer.MAX_VALUE;
 
    // Function to copy temporary solution to
    // the final solution
    static void copyToFinal(int curr_path[])
    {
        for (int i = 0; i < N; i++)
            final_path[i] = curr_path[i];
        final_path[N] = curr_path[0];
    }
 
    // Function to find the minimum edge cost
    // having an end at the vertex i
    static int firstMin(int adj[][], int i)
    {
        int min = Integer.MAX_VALUE;
        for (int k = 0; k < N; k++)
            if (adj[i][k] < min && i != k)
                min = adj[i][k];
        return min;
    }
 
    // function to find the second minimum edge cost
    // having an end at the vertex i
    static int secondMin(int adj[][], int i)
    {
        int first = Integer.MAX_VALUE, second = Integer.MAX_VALUE;
        for (int j=0; j<N; j++)
        {
            if (i == j)
                continue;
 
            if (adj[i][j] <= first)
            {
                second = first;
                first = adj[i][j];
            }
            else if (adj[i][j] <= second &&
                    adj[i][j] != first)
                second = adj[i][j];
        }
        return second;
    }
 
    // function that takes as arguments:
    // curr_bound -> lower bound of the root node
    // curr_weight-> stores the weight of the path so far
    // level-> current level while moving in the search
    //         space tree
    // curr_path[] -> where the solution is being stored which
    //             would later be copied to final_path[]
    static void TSPRec(int adj[][], int curr_bound, int curr_weight,
                int level, int curr_path[])
    {
        // base case is when we have reached level N which
        // means we have covered all the nodes once
        if (level == N)
        {
            // check if there is an edge from last vertex in
            // path back to the first vertex
            if (adj[curr_path[level - 1]][curr_path[0]] != 0)
            {
                // curr_res has the total weight of the
                // solution we got
                int curr_res = curr_weight +
                        adj[curr_path[level-1]][curr_path[0]];
     
                // Update final result and final path if
                // current result is better.
                if (curr_res < final_res)
                {
                    copyToFinal(curr_path);
                    final_res = curr_res;
                }
            }
            return;
        }
 
        // for any other level iterate for all vertices to
        // build the search space tree recursively
        for (int i = 0; i < N; i++)
        {
            // Consider next vertex if it is not same (diagonal
            // entry in adjacency matrix and not visited
            // already)
            if (adj[curr_path[level-1]][i] != 0 &&
                    visited[i] == false)
            {
                int temp = curr_bound;
                curr_weight += adj[curr_path[level - 1]][i];
 
                // different computation of curr_bound for
                // level 2 from the other levels
                if (level==1)
                curr_bound -= ((firstMin(adj, curr_path[level - 1]) +
                                firstMin(adj, i))/2);
                else
                curr_bound -= ((secondMin(adj, curr_path[level - 1]) +
                                firstMin(adj, i))/2);
 
                // curr_bound + curr_weight is the actual lower bound
                // for the node that we have arrived on
                // If current lower bound < final_res, we need to explore
                // the node further
                if (curr_bound + curr_weight < final_res)
                {
                    curr_path[level] = i;
                    visited[i] = true;
 
                    // call TSPRec for the next level
                    TSPRec(adj, curr_bound, curr_weight, level + 1,
                        curr_path);
                }
 
                // Else we have to prune the node by resetting
                // all changes to curr_weight and curr_bound
                curr_weight -= adj[curr_path[level-1]][i];
                curr_bound = temp;
 
                // Also reset the visited array
                Arrays.fill(visited,false);
                for (int j = 0; j <= level - 1; j++)
                    visited[curr_path[j]] = true;
            }
        }
    }
 
    // This function sets up final_path[]
    static void TSP(int adj[][])
    {
        int curr_path[] = new int[N + 1];
 
        // Calculate initial lower bound for the root node
        // using the formula 1/2 * (sum of first min +
        // second min) for all edges.
        // Also initialize the curr_path and visited array
        int curr_bound = 0;
        Arrays.fill(curr_path, -1);
        Arrays.fill(visited, false);
 
        // Compute initial bound
        for (int i = 0; i < N; i++)
            curr_bound += (firstMin(adj, i) +
                        secondMin(adj, i));
 
        // Rounding off the lower bound to an integer
        curr_bound = (curr_bound==1)? curr_bound/2 + 1 :
                                    curr_bound/2;
 
        // We start at vertex 1 so the first vertex
        // in curr_path[] is 0
        visited[0] = true;
        curr_path[0] = 0;
 
        // Call to TSPRec for curr_weight equal to
        // 0 and level 1
        TSPRec(adj, curr_bound, 0, 1, curr_path);
    }
     
    // Driver code
    public static void main(String[] args)
    {
        //Adjacency matrix for the given graph
        int adj[][] = {{0, 10, 15, 20},
                        {10, 0, 35, 25},
                        {15, 35, 0, 30},
                        {20, 25, 30, 0}    };
 
        TSP(adj);
 
        System.out.printf("Minimum cost : %d\n", final_res);
        System.out.printf("Path Taken : ");
        for (int i = 0; i <= N; i++)
        {
            System.out.printf("%d ", final_path[i]);
        }
    }
}
 
/* This code contributed by PrinciRaj1992 */


Python3




# Python3 program to solve
# Traveling Salesman Problem using
# Branch and Bound.
import math
maxsize = float('inf')
 
# Function to copy temporary solution
# to the final solution
def copyToFinal(curr_path):
    final_path[:N + 1] = curr_path[:]
    final_path[N] = curr_path[0]
 
# Function to find the minimum edge cost
# having an end at the vertex i
def firstMin(adj, i):
    min = maxsize
    for k in range(N):
        if adj[i][k] < min and i != k:
            min = adj[i][k]
 
    return min
 
# function to find the second minimum edge
# cost having an end at the vertex i
def secondMin(adj, i):
    first, second = maxsize, maxsize
    for j in range(N):
        if i == j:
            continue
        if adj[i][j] <= first:
            second = first
            first = adj[i][j]
 
        elif(adj[i][j] <= second and
             adj[i][j] != first):
            second = adj[i][j]
 
    return second
 
# function that takes as arguments:
# curr_bound -> lower bound of the root node
# curr_weight-> stores the weight of the path so far
# level-> current level while moving
# in the search space tree
# curr_path[] -> where the solution is being stored
# which would later be copied to final_path[]
def TSPRec(adj, curr_bound, curr_weight,
              level, curr_path, visited):
    global final_res
     
    # base case is when we have reached level N
    # which means we have covered all the nodes once
    if level == N:
         
        # check if there is an edge from
        # last vertex in path back to the first vertex
        if adj[curr_path[level - 1]][curr_path[0]] != 0:
             
            # curr_res has the total weight
            # of the solution we got
            curr_res = curr_weight + adj[curr_path[level - 1]]\
                                        [curr_path[0]]
            if curr_res < final_res:
                copyToFinal(curr_path)
                final_res = curr_res
        return
 
    # for any other level iterate for all vertices
    # to build the search space tree recursively
    for i in range(N):
         
        # Consider next vertex if it is not same
        # (diagonal entry in adjacency matrix and
        #  not visited already)
        if (adj[curr_path[level-1]][i] != 0 and
                            visited[i] == False):
            temp = curr_bound
            curr_weight += adj[curr_path[level - 1]][i]
 
            # different computation of curr_bound
            # for level 2 from the other levels
            if level == 1:
                curr_bound -= ((firstMin(adj, curr_path[level - 1]) +
                                firstMin(adj, i)) / 2)
            else:
                curr_bound -= ((secondMin(adj, curr_path[level - 1]) +
                                 firstMin(adj, i)) / 2)
 
            # curr_bound + curr_weight is the actual lower bound
            # for the node that we have arrived on.
            # If current lower bound < final_res,
            # we need to explore the node further
            if curr_bound + curr_weight < final_res:
                curr_path[level] = i
                visited[i] = True
                 
                # call TSPRec for the next level
                TSPRec(adj, curr_bound, curr_weight,
                       level + 1, curr_path, visited)
 
            # Else we have to prune the node by resetting
            # all changes to curr_weight and curr_bound
            curr_weight -= adj[curr_path[level - 1]][i]
            curr_bound = temp
 
            # Also reset the visited array
            visited = [False] * len(visited)
            for j in range(level):
                if curr_path[j] != -1:
                    visited[curr_path[j]] = True
 
# This function sets up final_path
def TSP(adj):
     
    # Calculate initial lower bound for the root node
    # using the formula 1/2 * (sum of first min +
    # second min) for all edges. Also initialize the
    # curr_path and visited array
    curr_bound = 0
    curr_path = [-1] * (N + 1)
    visited = [False] * N
 
    # Compute initial bound
    for i in range(N):
        curr_bound += (firstMin(adj, i) +
                       secondMin(adj, i))
 
    # Rounding off the lower bound to an integer
    curr_bound = math.ceil(curr_bound / 2)
 
    # We start at vertex 1 so the first vertex
    # in curr_path[] is 0
    visited[0] = True
    curr_path[0] = 0
 
    # Call to TSPRec for curr_weight
    # equal to 0 and level 1
    TSPRec(adj, curr_bound, 0, 1, curr_path, visited)
 
# Driver code
 
# Adjacency matrix for the given graph
adj = [[0, 10, 15, 20],
       [10, 0, 35, 25],
       [15, 35, 0, 30],
       [20, 25, 30, 0]]
N = 4
 
# final_path[] stores the final solution
# i.e. the // path of the salesman.
final_path = [None] * (N + 1)
 
# visited[] keeps track of the already
# visited nodes in a particular path
visited = [False] * N
 
# Stores the final minimum weight
# of shortest tour.
final_res = maxsize
 
TSP(adj)
 
print("Minimum cost :", final_res)
print("Path Taken : ", end = ' ')
for i in range(N + 1):
    print(final_path[i], end = ' ')
 
# This code is contributed by ng24_7


C#




// C# program to solve Traveling Salesman Problem
// using Branch and Bound.
using System;
 
public class GFG {
 
  static int N = 4;
 
  // final_path[] stores the final solution ie, the
  // path of the salesman.
  static int[] final_path = new int[N + 1];
 
  // visited[] keeps track of the already visited nodes
  // in a particular path
  static bool[] visited = new bool[N];
 
  // Stores the final minimum weight of shortest tour.
  static int final_res = Int32.MaxValue;
 
  // Function to copy temporary solution to
  // the final solution
  static void copyToFinal(int[] curr_path)
  {
    for (int i = 0; i < N; i++)
      final_path[i] = curr_path[i];
    final_path[N] = curr_path[0];
  }
 
  // Function to find the minimum edge cost
  // having an end at the vertex i
  static int firstMin(int[, ] adj, int i)
  {
    int min = Int32.MaxValue;
    for (int k = 0; k < N; k++)
      if (adj[i, k] < min && i != k)
        min = adj[i, k];
    return min;
  }
 
  // function to find the second minimum edge cost
  // having an end at the vertex i
  static int secondMin(int[, ] adj, int i)
  {
    int first = Int32.MaxValue, second = Int32.MaxValue;
    for (int j = 0; j < N; j++) {
      if (i == j)
        continue;
 
      if (adj[i, j] <= first) {
        second = first;
        first = adj[i, j];
      }
      else if (adj[i, j] <= second
               && adj[i, j] != first)
        second = adj[i, j];
    }
    return second;
  }
 
  // function that takes as arguments:
  // curr_bound -> lower bound of the root node
  // curr_weight-> stores the weight of the path so far
  // level-> current level while moving in the search
  //         space tree
  // curr_path[] -> where the solution is being stored
  // which
  //             would later be copied to final_path[]
  static void TSPRec(int[, ] adj, int curr_bound,
                     int curr_weight, int level,
                     int[] curr_path)
  {
    // base case is when we have reached level N which
    // means we have covered all the nodes once
    if (level == N) {
      // check if there is an edge from last vertex in
      // path back to the first vertex
      if (adj[curr_path[level - 1], curr_path[0]]
          != 0) {
        // curr_res has the total weight of the
        // solution we got
        int curr_res = curr_weight
          + adj[curr_path[level - 1],
                curr_path[0]];
 
        // Update final result and final path if
        // current result is better.
        if (curr_res < final_res) {
          copyToFinal(curr_path);
          final_res = curr_res;
        }
      }
      return;
    }
 
    // for any other level iterate for all vertices to
    // build the search space tree recursively
    for (int i = 0; i < N; i++) {
      // Consider next vertex if it is not same
      // (diagonal entry in adjacency matrix and not
      // visited already)
      if (adj[curr_path[level - 1], i] != 0
          && visited[i] == false) {
        int temp = curr_bound;
        curr_weight += adj[curr_path[level - 1], i];
 
        // different computation of curr_bound for
        // level 2 from the other levels
        if (level == 1)
          curr_bound
          -= ((firstMin(adj,
                        curr_path[level - 1])
               + firstMin(adj, i))
              / 2);
        else
          curr_bound
          -= ((secondMin(adj,
                         curr_path[level - 1])
               + firstMin(adj, i))
              / 2);
 
        // curr_bound + curr_weight is the actual
        // lower bound for the node that we have
        // arrived on If current lower bound <
        // final_res, we need to explore the node
        // further
        if (curr_bound + curr_weight < final_res) {
          curr_path[level] = i;
          visited[i] = true;
 
          // call TSPRec for the next level
          TSPRec(adj, curr_bound, curr_weight,
                 level + 1, curr_path);
        }
 
        // Else we have to prune the node by
        // resetting all changes to curr_weight and
        // curr_bound
        curr_weight -= adj[curr_path[level - 1], i];
        curr_bound = temp;
 
        // Also reset the visited array
        Array.Fill(visited, false);
        for (int j = 0; j <= level - 1; j++)
          visited[curr_path[j]] = true;
      }
    }
  }
 
  // This function sets up final_path[]
  static void TSP(int[, ] adj)
  {
    int[] curr_path = new int[N + 1];
 
    // Calculate initial lower bound for the root node
    // using the formula 1/2 * (sum of first min +
    // second min) for all edges.
    // Also initialize the curr_path and visited array
    int curr_bound = 0;
    Array.Fill(curr_path, -1);
    Array.Fill(visited, false);
 
    // Compute initial bound
    for (int i = 0; i < N; i++)
      curr_bound
      += (firstMin(adj, i) + secondMin(adj, i));
 
    // Rounding off the lower bound to an integer
    curr_bound = (curr_bound == 1) ? curr_bound / 2 + 1
      : curr_bound / 2;
 
    // We start at vertex 1 so the first vertex
    // in curr_path[] is 0
    visited[0] = true;
    curr_path[0] = 0;
 
    // Call to TSPRec for curr_weight equal to
    // 0 and level 1
    TSPRec(adj, curr_bound, 0, 1, curr_path);
  }
 
  // Driver code
  static public void Main()
  {
    // Adjacency matrix for the given graph
    int[, ] adj = { { 0, 10, 15, 20 },
                   { 10, 0, 35, 25 },
                   { 15, 35, 0, 30 },
                   { 20, 25, 30, 0 } };
 
    TSP(adj);
 
    Console.WriteLine("Minimum cost : " + final_res);
    Console.Write("Path Taken : ");
    for (int i = 0; i <= N; i++) {
      Console.Write(final_path[i] + " ");
    }
  }
}
 
// This code is contributed by Rohit Pradhan


Javascript




const N = 4;
 
// final_path[] stores the final solution ie, the
// path of the salesman.
 let final_path = Array (N + 1).fill (-1);
  
// visited[] keeps track of the already visited nodes
// in a particular path
  let visited = Array (N).fill (false);
 
// Stores the final minimum weight of shortest tour.
  let final_res = Number.MAX_SAFE_INTEGER;
 
// Function to copy temporary solution to
// the final solution
function copyToFinal (curr_path){
      for (let i = 0; i < N; i++){
      final_path[i] = curr_path[i];
      }
      final_path[N] = curr_path[0];
}
 
// Function to find the minimum edge cost
// having an end at the vertex i
function firstMin (adj, i){
let min = Number.MAX_SAFE_INTEGER;
    for (let k = 0; k < N; k++){
      if (adj[i][k] < min && i !== k){
             min = adj[i][k];
       }
       }
 return min;
}
 
 
// function to find the second minimum edge cost
// having an end at the vertex i
function secondMin (adj, i){
    let first = Number.MAX_SAFE_INTEGER;
    let second = Number.MAX_SAFE_INTEGER;
      for (let j = 0; j < N; j++){
        if (i ==  j){
            continue;
         }
        if (adj[i][j] <= first){
              second = first;
             first = adj[i][j];
        }
          else if (adj[i][j] <= second && adj[i][j] !== first){
              second = adj[i][j];
        }
   }
      return second;
}
 
 
// function that takes as arguments:
// curr_bound -> lower bound of the root node
// curr_weight-> stores the weight of the path so far
// level-> current level while moving in the search
//         space tree
// curr_path[] -> where the solution is being stored which
//             would later be copied to final_path[]
  function TSPRec (adj, curr_bound, curr_weight, level, curr_path)
{
   
// base case is when we have reached level N which
// means we have covered all the nodes once
    if (level ==  N)
    {
    // check if there is an edge from last vertex in
    // path back to the first vertex
    if (adj[curr_path[level - 1]][curr_path[0]] !== 0)
    {
       
        // curr_res has the total weight of the
        // solution we got
        let curr_res =
        curr_weight + adj[curr_path[level - 1]][curr_path[0]];
       
        // Update final result and final path if
        // current result is better.
        if (curr_res < final_res)
        {
          copyToFinal (curr_path);
          final_res = curr_res;
        }
    }
      return;
     
}
   
    // for any other level iterate for all vertices to
    // build the search space tree recursively
    for (let i = 0; i < N; i++){
       
    // Consider next vertex if it is not same (diagonal
    // entry in adjacency matrix and not visited
    // already)
    if (adj[curr_path[level - 1]][i] !== 0 && !visited[i]){
       
    let temp = curr_bound;
   curr_weight += adj[curr_path[level - 1]][i];
       
        // different computation of curr_bound for
        // level 2 from the other levels
        if (level ==  1){
          curr_bound -= (firstMin (adj, curr_path[level - 1]) + firstMin (adj, i)) / 2;
         
}
      else
        {
          curr_bound -= (secondMin (adj, curr_path[level - 1]) + firstMin (adj, i)) / 2;
         
}
       
        // curr_bound + curr_weight is the actual lower bound
        // for the node that we have arrived on
        // If current lower bound < final_res, we need to explore
        // the node further
        if (curr_bound + curr_weight < final_res){
          curr_path[level] = i;
          visited[i] = true;     
        // call TSPRec for the next level
        TSPRec (adj, curr_bound, curr_weight, level + 1, curr_path);
         
}
       
        // Else we have to prune the node by resetting
        // all changes to curr_weight and curr_bound
        curr_weight -= adj[curr_path[level - 1]][i];
          curr_bound = temp;
       
        // Also reset the visited array
        visited.fill (false)
        for (var j = 0; j <= level - 1; j++)
               visited[curr_path[j]] = true;
     
}
     
}
 
}
 
 
  // This function sets up final_path[]
  function TSP (adj)
{
   
let curr_path = Array (N + 1).fill (-1);
   
// Calculate initial lower bound for the root node
// using the formula 1/2 * (sum of first min +
// second min) for all edges.
// Also initialize the curr_path and visited array
    let curr_bound = 0;
   
visited.fill (false);
   
    // compute initial bound
    for (let i = 0; i < N; i++){
      curr_bound += firstMin (adj, i) + secondMin (adj, i);
     
    }
   
    // Rounding off the lower bound to an integer
    curr_bound = curr_bound ==  1 ? (curr_bound / 2) + 1 : (curr_bound / 2);
   
// We start at vertex 1 so the first vertex
// in curr_path[] is 0
    visited[0] = true;
   
curr_path[0] = 0;
   
// Call to TSPRec for curr_weight equal to
// 0 and level 1
    TSPRec (adj, curr_bound, 0, 1, curr_path);
 
}
 
 
//Adjacency matrix for the given graph
  let adj =[[0, 10, 15, 20],
        [10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]];
 
  
TSP (adj);
 
  
console.log (`Minimum cost:${final_res}`);
console.log (`Path Taken:${final_path.join (" ")}`);
 
 // This code is contributed by anskalyan3.


Output : 
 

Minimum cost : 80
Path Taken : 0 1 3 2 0 

The rounding is being done in this line of code:

if (level==1)
   curr_bound -= ((firstMin(adj, curr_path[level-1]) +
                   firstMin(adj, i))/2);
else
   curr_bound -= ((secondMin(adj, curr_path[level-1]) +
                   firstMin(adj, i))/2);

In the Branch and Bound TSP algorithm, we compute a lower bound on the total cost of the optimal solution by adding up the minimum edge costs for each vertex, and then dividing by two. However, this lower bound may not be an integer. To get an integer lower bound, we can use rounding.

In the above code, the curr_bound variable holds the current lower bound on the total cost of the optimal solution. When we visit a new vertex at level level, we compute a new lower bound new_bound by taking the sum of the minimum edge costs for the new vertex and its two closest neighbors. We then update the curr_bound variable by rounding new_bound to the nearest integer.

If level is 1, we round down to the nearest integer. This is because we have only visited one vertex so far, and we want to be conservative in our estimate of the total cost of the optimal solution. If level is greater than 1, we use a more aggressive rounding strategy that takes into account the fact that we have already visited some vertices and can therefore make a more accurate estimate of the total cost of the optimal solution.

Time Complexity: The worst case complexity of Branch and Bound remains same as that of the Brute Force clearly because in worst case, we may never get a chance to prune a node. Whereas, in practice it performs very well depending on the different instance of the TSP. The complexity also depends on the choice of the bounding function as they are the ones deciding how many nodes to be pruned.
References: 
http://lcm.csa.iisc.ernet.in/dsa/node187.html
This article is contributed by Anurag Rai. If you like neveropen and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments