Saturday, January 11, 2025
Google search engine
HomeData Modelling & AITrap the King by one of the given Set of pieces

Trap the King by one of the given Set of pieces

Given an 8 X 8 matrix of characters ‘*’ and ‘K’  as a chessboard in which K represents the position of the King and the rest of the cell is represented by *.

Also given the following three sets of pieces:

Set 1: 1 Queen
Set 2: 1 Queen, 1 Rook
Set 3: 1 Queen, 1 Rook, 1 Bishop

Then you have to trap the King in such a way that all conditions should be met:

  • Trap the King by one of the given sets and you can’t use Set 2(Queen, Rook) if trapping is possible by Set 1(Queen), same with Set 3 and Set 2 respectively. 
  • King should not be able to make any of its possible moves.
  • King should not be directly under attack by any piece of used Set to trap.

Then the task is to print an 8 X 8 matrix as output, in which ‘Q’ will represent Queen, ‘R’ will represent Rook, ‘B’ will represent ‘Bishop’, according to the set used and ‘K’ will remain the same for King.

Note: If there are multiple positions of pieces to trap the King by following all conditions, Then just print any of the Valid positions of the piece(s) of the used set to trap. 

Examples:

Input: matrix[][]  = 

 * * * * * * * * 
 * * * * * * * * 
 * * * * * * * * 
 * * * K * * * * 
 * * * * * * * * 
 * * * * * * * * 
 * * * * * * * * 

Output:

* * * * * * * * 
* * * * * * * * 
* * * * * Q * * 
* * * K * * * * 
* R * * * * * * 
* * * * B * * * 
* * * * * * * * 
* * * * * * * *

Explanation: King is present at (4, 4), Queen at (3, 6), Rook at (5, 2) and Bishop at (6, 5) .Trapping the king is not possible by Set 1 and 2, Therefore Set 3 is used.King is not under-attack by any of the pieces as well as not able to make any of its possible move.Hence, all the conditions are met and one of the possible position of pieces is present in output.      

Input: matrix[][]  =

* * * * * * * * 
* K * * * * * * 
* * * * * * * * 
* * * * * * * * 
* * * * * * * * 
* * * * * * * * 
* * * * * * * *

Output:

* * * Q * * * * 
* K * * * * * * 
* * * R * * * * 
* * B * * * * * 
* * * * * * * * 
* * * * * * * * 
* * * * * * * * 
* * * * * * * * 

Explanation: King is present at (2, 2), Queen at (1, 4), Rook at (3, 4) and Bishop at (4, 3) .It can be verified that trapping the king is not possible by Set 1 and 2, Therefore, Set 3 is used.King is not under-attack by any of the pieces as well as not able to make any of its possible move.Hence, all the conditions are met and one of the possible position of pieces is present in output.      

Approach: The problem is purely based on observations. See the Below explanation of all observations deeply and where to use all three provided sets of pieces.

Observations:

All possible positions pf King 

These are all the possible cases for King’s position; Different colored squares required different sets and positions of pieces. So, the King can’t make any its possible move. Let’s see the set used by each colored square to trap the King:-

  • For Dark Green colored squares:-

           If the King is present at one of the Dark Green colored squares, It is always possible to trap it by using Set 1.  

  • For Orange colored squares:-

           If the King is present at one of the Orange colored squares, It is not possible to trap King by Set 1, therefore Set 2 can be used.  

  • For Sky, Light Green and Brown colored squares:-

If the King is present one of the Sky Blue, Light Green or Brown colored squares, It is not possible to trap King by Set 1 or 2, So, Set 3 can be used.

Note: Instead having use of same set(Set 3 for Sky-Blue/Light Green/Brown); different colors are used because It would be difficult to find and apply the same valid position of pieces in all these colored squares.That’s why these different three colors are used, In which all three colored squares will use Set 3 to trap but different arrangement of position of pieces. So, that code can be implemented easily. Below one example of each color cell is provided.

One Example of each colored cell:

  • For Dark Green Square:

An Example of Dark Green Square 

  • For Orange Square:

An example of Orange colored Square

  • For Sky Blue Square:

An Example of Sky Blue Colored Square

  • For light Green Squares:

An Example of Light Green Square

  • For Brown Square:

An Example of Brown colored square

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// User defined Function for
// printing chessboard[][]
void printer(vector<vector<char>> chessboard)
{
 
  for (int i = 1; i < chessboard.size(); i++) {
    for (int j = 1; j < chessboard[0].size(); j++) {
      cout<<chessboard[i][j] << " ";
    }
    cout<<endl;
  }
}
 
// Driver Function
int main()
{
 
  // Input Matrix
  vector<vector<char>> matrix
    = { { '*', '*', '*', '*', '*', '*', '*', '*' },
       { '*', '*', '*', '*', '*', '*', '*', '*' },
       { '*', '*', '*', '*', '*', '*', '*', '*' },
       { '*', '*', '*', 'K', '*', '*', '*', '*' },
       { '*', '*', '*', '*', '*', '*', '*', '*' },
       { '*', '*', '*', '*', '*', '*', '*', '*' },
       { '*', '*', '*', '*', '*', '*', '*', '*' },
       { '*', '*', '*', '*', '*', '*', '*',
        '*' } };
 
  // Variables to Store
  // position of King
  int a = 0, b = 0;
 
  // Outer loop for traversing
  // on input matrix[][]
  for (int i = 0; i < matrix.size(); i++) {
 
    // Inner loop for traversing
    // on matrix[][]
    for (int j = 0; j < matrix[0].size(); j++) {
 
      // If Position of
      // King found
      if (matrix[i][j] == 'K') {
 
        // Updating variables
        // if 'K'(position of
        // King) is found
        a = i + 1;
        b = j + 1;
      }
    }
  }
 
  // 2D chessboard array initialized
  vector<vector<char>> chessboard(9, vector<char>(9));
 
  // Updating whole chessboard with '*'
  for (int i = 0; i < 9; i++)
    for (int j = 0; j < 9; j++)
      chessboard[i][j] = '*';
 
  // King's position stored as char 'K' in
  // chessboard[][]
  chessboard[a][b] = 'K';
 
  // for All Dark Green
  // colored Squares
  if (a == 1 && b == 1) {
    chessboard[2][3] = 'Q';
  }
  else if (a == 1 && b == 8) {
    chessboard[2][6] = 'Q';
  }
  else if (a == 8 && b == 1) {
    chessboard[7][3] = 'Q';
  }
  else if (a == 8 && b == 8) {
    chessboard[7][6] = 'Q';
  }
 
  // For all Orange colored Squares
  else if (b == 1) {
    chessboard[a - 1][3] = 'Q';
    chessboard[a + 1][3] = 'R';
  }
  else if (a == 1) {
    chessboard[3][b - 1] = 'Q';
    chessboard[3][b + 1] = 'R';
  }
  else if (b == 8) {
    chessboard[a - 1][6] = 'Q';
    chessboard[a + 1][6] = 'R';
  }
  else if (a == 8) {
    chessboard[6][b - 1] = 'Q';
    chessboard[6][b + 1] = 'R';
  }
 
  // For all Sky Blue colored Squares
  else if (a == 2 && b == 2) {
    chessboard[1][4] = 'Q';
    chessboard[3][4] = 'R';
    chessboard[4][3] = 'B';
  }
  else if (a == 2 && b == 7) {
    chessboard[1][5] = 'Q';
    chessboard[3][5] = 'R';
    chessboard[4][6] = 'B';
  }
  else if (a == 7 && b == 2) {
    chessboard[8][4] = 'Q';
    chessboard[6][4] = 'R';
    chessboard[5][3] = 'B';
  }
  else if (a == 7 && b == 7) {
    chessboard[8][5] = 'Q';
    chessboard[6][5] = 'R';
    chessboard[5][6] = 'B';
  }
 
  // For all light Green
  // colored Squares
  else if (a == 2 || a == 7 || b == 2 || b == 7) {
    if (a == 2) {
      chessboard[a - 1][b + 2] = 'Q';
      chessboard[a + 2][b - 1] = 'R';
      chessboard[a + 2][b] = 'B';
    }
    else if (a == 7) {
      chessboard[a + 1][b + 2] = 'Q';
      chessboard[a - 2][b - 1] = 'R';
      chessboard[a - 2][b] = 'B';
    }
    else if (b == 2) {
      chessboard[a - 1][b + 2] = 'Q';
      chessboard[a + 1][b + 2] = 'R';
      chessboard[a + 2][b + 1] = 'B';
    }
    else {
      chessboard[a - 1][b - 2] = 'Q';
      chessboard[a + 1][b - 2] = 'R';
      chessboard[a + 2][b - 1] = 'B';
    }
  }
 
  // For all Brown colored Squares
  else {
    chessboard[a - 1][b + 2] = 'Q';
    chessboard[a + 1][b - 2] = 'R';
    chessboard[a + 2][b + 1] = 'B';
  }
 
  // Function to print chessboard
  // along with position of Pieces
  printer(chessboard);
}
 
// This code is contributed by Potta Lokesh


Java




// Java code to implement the approach
 
import java.util.*;
class GFG {
 
    // Driver Function
    public static void main(String[] args)
    {
 
        // Input Matrix
        char matrix[][]
            = { { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', 'K', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*',
                  '*' } };
 
        // Variables to Store
        // position of King
        int a = 0, b = 0;
 
        // Outer loop for traversing
        // on input matrix[][]
        for (int i = 0; i < matrix.length; i++) {
 
            // Inner loop for traversing
            // on matrix[][]
            for (int j = 0; j < matrix[0].length; j++) {
 
                // If Position of
                // King found
                if (matrix[i][j] == 'K') {
 
                    // Updating variables
                    // if 'K'(position of
                    // King) is found
                    a = i + 1;
                    b = j + 1;
                }
            }
        }
 
        // 2D chessboard array initialized
        char[][] chessboard = new char[9][9];
 
        //Updating whole chessboard with '*'
        for (int i = 0; i < 9; i++)
            for (int j = 0; j < 9; j++)
                chessboard[i][j] = '*';
 
        // King's position stored as char 'K' in
        // chessboard[][]
        chessboard[a][b] = 'K';
 
        // for All Dark Green
        // colored Squares
        if (a == 1 && b == 1) {
            chessboard[2][3] = 'Q';
        }
        else if (a == 1 && b == 8) {
            chessboard[2][6] = 'Q';
        }
        else if (a == 8 && b == 1) {
            chessboard[7][3] = 'Q';
        }
        else if (a == 8 && b == 8) {
            chessboard[7][6] = 'Q';
        }
 
        // For all Orange colored Squares
        else if (b == 1) {
            chessboard[a - 1][3] = 'Q';
            chessboard[a + 1][3] = 'R';
        }
        else if (a == 1) {
            chessboard[3][b - 1] = 'Q';
            chessboard[3][b + 1] = 'R';
        }
        else if (b == 8) {
            chessboard[a - 1][6] = 'Q';
            chessboard[a + 1][6] = 'R';
        }
        else if (a == 8) {
            chessboard[6][b - 1] = 'Q';
            chessboard[6][b + 1] = 'R';
        }
 
        // For all Sky Blue colored Squares
        else if (a == 2 && b == 2) {
            chessboard[1][4] = 'Q';
            chessboard[3][4] = 'R';
            chessboard[4][3] = 'B';
        }
        else if (a == 2 && b == 7) {
            chessboard[1][5] = 'Q';
            chessboard[3][5] = 'R';
            chessboard[4][6] = 'B';
        }
        else if (a == 7 && b == 2) {
            chessboard[8][4] = 'Q';
            chessboard[6][4] = 'R';
            chessboard[5][3] = 'B';
        }
        else if (a == 7 && b == 7) {
            chessboard[8][5] = 'Q';
            chessboard[6][5] = 'R';
            chessboard[5][6] = 'B';
        }
 
        // For all light Green
        // colored Squares
        else if (a == 2 || a == 7 || b == 2 || b == 7) {
            if (a == 2) {
                chessboard[a - 1][b + 2] = 'Q';
                chessboard[a + 2][b - 1] = 'R';
                chessboard[a + 2][b] = 'B';
            }
            else if (a == 7) {
                chessboard[a + 1][b + 2] = 'Q';
                chessboard[a - 2][b - 1] = 'R';
                chessboard[a - 2][b] = 'B';
            }
            else if (b == 2) {
                chessboard[a - 1][b + 2] = 'Q';
                chessboard[a + 1][b + 2] = 'R';
                chessboard[a + 2][b + 1] = 'B';
            }
            else {
                chessboard[a - 1][b - 2] = 'Q';
                chessboard[a + 1][b - 2] = 'R';
                chessboard[a + 2][b - 1] = 'B';
            }
        }
 
        // For all Brown colored Squares
        else {
            chessboard[a - 1][b + 2] = 'Q';
            chessboard[a + 1][b - 2] = 'R';
            chessboard[a + 2][b + 1] = 'B';
        }
 
        // Function to print chessboard
        // along with position of Pieces
        printer(chessboard);
    }
 
    // User defined Function for
    // printing chessboard[][]
    static void printer(char[][] chessboard)
    {
 
        for (int i = 1; i < chessboard.length; i++) {
            for (int j = 1; j < chessboard[0].length; j++) {
                System.out.print(chessboard[i][j] + " ");
            }
            System.out.println();
        }
    }
}


Python3




class GFG :
    # Driver Function
    @staticmethod
    def main( args) :
       
        # Input Matrix
        matrix = [['*', '*', '*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*', '*', '*'], ['*', '*', '*', 'K', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*', '*', '*']]
         
        # Variables to Store
        # position of King
        a = 0
        b = 0
         
        # Outer loop for traversing
        # on input matrix[][]
        i = 0
        while (i < len(matrix)) :
           
            # Inner loop for traversing
            # on matrix[][]
            j = 0
            while (j < len(matrix[0])) :
               
                # If Position of
                # King found
                if (matrix[i][j] == 'K') :
                   
                    # Updating variables
                    # if 'K'(position of
                    # King) is found
                    a = i + 1
                    b = j + 1
                j += 1
            i += 1
             
        # 2D chessboard array initialized
        chessboard = [[' '] * (9) for _ in range(9)]
         
        # Updating whole chessboard with '*'
        i = 0
        while (i < 9) :
            j = 0
            while (j < 9) :
                chessboard[i][j] = '*'
                j += 1
            i += 1
             
        # King's position stored as char 'K' in
        # chessboard[][]
        chessboard[a][b] = 'K'
         
        # for All Dark Green
        # colored Squares
        if (a == 1 and b == 1) :
            chessboard[2][3] = 'Q'
        elif(a == 1 and b == 8) :
            chessboard[2][6] = 'Q'
        elif(a == 8 and b == 1) :
            chessboard[7][3] = 'Q'
        elif(a == 8 and b == 8) :
            chessboard[7][6] = 'Q'
        elif(b == 1) :
            chessboard[a - 1][3] = 'Q'
            chessboard[a + 1][3] = 'R'
        elif(a == 1) :
            chessboard[3][b - 1] = 'Q'
            chessboard[3][b + 1] = 'R'
        elif(b == 8) :
            chessboard[a - 1][6] = 'Q'
            chessboard[a + 1][6] = 'R'
        elif(a == 8) :
            chessboard[6][b - 1] = 'Q'
            chessboard[6][b + 1] = 'R'
        elif(a == 2 and b == 2) :
            chessboard[1][4] = 'Q'
            chessboard[3][4] = 'R'
            chessboard[4][3] = 'B'
        elif(a == 2 and b == 7) :
            chessboard[1][5] = 'Q'
            chessboard[3][5] = 'R'
            chessboard[4][6] = 'B'
        elif(a == 7 and b == 2) :
            chessboard[8][4] = 'Q'
            chessboard[6][4] = 'R'
            chessboard[5][3] = 'B'
        elif(a == 7 and b == 7) :
            chessboard[8][5] = 'Q'
            chessboard[6][5] = 'R'
            chessboard[5][6] = 'B'
        elif(a == 2 or a == 7 or b == 2 or b == 7) :
            if (a == 2) :
                chessboard[a - 1][b + 2] = 'Q'
                chessboard[a + 2][b - 1] = 'R'
                chessboard[a + 2][b] = 'B'
            elif(a == 7) :
                chessboard[a + 1][b + 2] = 'Q'
                chessboard[a - 2][b - 1] = 'R'
                chessboard[a - 2][b] = 'B'
            elif(b == 2) :
                chessboard[a - 1][b + 2] = 'Q'
                chessboard[a + 1][b + 2] = 'R'
                chessboard[a + 2][b + 1] = 'B'
            else :
                chessboard[a - 1][b - 2] = 'Q'
                chessboard[a + 1][b - 2] = 'R'
                chessboard[a + 2][b - 1] = 'B'
        else :
            chessboard[a - 1][b + 2] = 'Q'
            chessboard[a + 1][b - 2] = 'R'
            chessboard[a + 2][b + 1] = 'B'
             
        # Function to print chessboard
        # along with position of Pieces
        GFG.printer(chessboard)
         
    # User defined Function for
    # printing chessboard[][]
    @staticmethod
    def printer( chessboard) :
        i = 1
        while (i < len(chessboard)) :
            j = 1
            while (j < len(chessboard[0])) :
                print(str(chessboard[i][j]) + " ", end ="")
                j += 1
            print()
            i += 1
 
if __name__=="__main__":
    GFG.main([])
     
    # This code is contributed by aadityaburujwale.


C#




// Include namespace system
using System;
 
public class GFG
{
   
    // Driver Function
    public static void Main(String[] args)
    {
        // Input Matrix
        char[, ] matrix
            = { { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', 'K', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*', '*' },
                { '*', '*', '*', '*', '*', '*', '*','*' } };
       
        // Variables to Store
        // position of King
        var a = 0;
        var b = 0;
       
        // Outer loop for traversing
        // on input matrix[][]
        for (int i = 0; i < matrix.GetLength(0); i++)
        {
           
            // Inner loop for traversing
            // on matrix[][]
            for (int j = 0; j < matrix.GetLength(1); j++)
            {
               
                // If Position of
                // King found
                if (matrix[i, j] == 'K')
                {
                   
                    // Updating variables
                    // if 'K'(position of
                    // King) is found
                    a = i + 1;
                    b = j + 1;
                }
            }
        }
       
        // 2D chessboard array initialized
        char[, ] chessboard = new char[9, 9];
       
        // Updating whole chessboard with '*'
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 9; j++) {
                chessboard[i, j] = '*';
            }
        }
       
        // King's position stored as char 'K' in
        // chessboard[][]
        chessboard[a, b] = 'K';
       
        // for All Dark Green
        // colored Squares
        if (a == 1 && b == 1) {
            chessboard[2, 3] = 'Q';
        }
        else if (a == 1 && b == 8) {
            chessboard[2, 6] = 'Q';
        }
        else if (a == 8 && b == 1) {
            chessboard[7, 3] = 'Q';
        }
        else if (a == 8 && b == 8) {
            chessboard[7, 6] = 'Q';
        }
        else if (b == 1) {
            chessboard[a - 1, 3] = 'Q';
            chessboard[a + 1, 3] = 'R';
        }
        else if (a == 1) {
            chessboard[3, b - 1] = 'Q';
            chessboard[3, b + 1] = 'R';
        }
        else if (b == 8) {
            chessboard[a - 1, 6] = 'Q';
            chessboard[a + 1, 6] = 'R';
        }
        else if (a == 8) {
            chessboard[6, b - 1] = 'Q';
            chessboard[6, b + 1] = 'R';
        }
        else if (a == 2 && b == 2) {
            chessboard[1, 4] = 'Q';
            chessboard[3, 4] = 'R';
            chessboard[4, 3] = 'B';
        }
        else if (a == 2 && b == 7) {
            chessboard[1, 5] = 'Q';
            chessboard[3, 5] = 'R';
            chessboard[4, 6] = 'B';
        }
        else if (a == 7 && b == 2) {
            chessboard[8, 4] = 'Q';
            chessboard[6, 4] = 'R';
            chessboard[5, 3] = 'B';
        }
        else if (a == 7 && b == 7) {
            chessboard[8, 5] = 'Q';
            chessboard[6, 5] = 'R';
            chessboard[5, 6] = 'B';
        }
        else if (a == 2 || a == 7 || b == 2 || b == 7) {
            if (a == 2) {
                chessboard[a - 1, b + 2] = 'Q';
                chessboard[a + 2, b - 1] = 'R';
                chessboard[a + 2, b] = 'B';
            }
            else if (a == 7) {
                chessboard[a + 1, b + 2] = 'Q';
                chessboard[a - 2, b - 1] = 'R';
                chessboard[a - 2, b] = 'B';
            }
            else if (b == 2) {
                chessboard[a - 1, b + 2] = 'Q';
                chessboard[a + 1, b + 2] = 'R';
                chessboard[a + 2, b + 1] = 'B';
            }
            else {
                chessboard[a - 1, b - 2] = 'Q';
                chessboard[a + 1, b - 2] = 'R';
                chessboard[a + 2, b - 1] = 'B';
            }
        }
        else {
            chessboard[a - 1, b + 2] = 'Q';
            chessboard[a + 1, b - 2] = 'R';
            chessboard[a + 2, b + 1] = 'B';
        }
       
        // Function to print chessboard
        // along with position of Pieces
        GFG.printer(chessboard);
    }
   
    // User defined Function for
    // printing chessboard[][]
    public static void printer(char[,] chessboard)
    {
        for (int i = 1; i < 9; i++) {
            for (int j = 1; j < 9; j++) {
                Console.Write(chessboard[i, j].ToString()
                              + " ");
            }
            Console.WriteLine();
        }
    }
}
 
// This code is contributed by aadityaburujwale.


Javascript




// JavaScript code to implement the approach
function printer(chessboard){
    for(let i = 1; chessboard.length; i++){
        for(let j = 1; j < chessboard[0].length; j++){
            console.log(chessboard[i][j] + " ");
        }
        console.log("<br>");
    }
}
 
// Input Matrix
let matrix = [['*', '*', '*', '*', '*', '*', '*', '*'],
              ['*', '*', '*', '*', '*', '*', '*', '*'],
              ['*', '*', '*', '*', '*', '*', '*', '*'],
              ['*', '*', '*', 'K', '*', '*', '*', '*'],
              ['*', '*', '*', '*', '*', '*', '*', '*'],
              ['*', '*', '*', '*', '*', '*', '*', '*'],
              ['*', '*', '*', '*', '*', '*', '*', '*'],
              ['*', '*', '*', '*', '*', '*', '*', '*']];
 
// Variables to Store
// position of King
let a = 0;
let b = 0;
 
// Outer loop for traversing
// on input matrix[][]
for(let i=0;i<matrix.length;i++){
    // Inner loop for traversing
    // on matrix[][]
    for(let j=0;j<matrix[0].length;j++){
        // If Position of
        // King found
        if(matrix[i][j]=='K'){
             
            // Updating variables
            // if 'K'(position of
            // King) is found
            a = i + 1;
            b = j + 1;
        }
    }
}
 
// 2D chessboard array initialized
var chessboard = [];
 
// Updating whole chessboard with '*'
for(let i = 0; i < 9; i++) {
    chessboard[i] = [];
    for(let j = 0; j < 9; j++) {
        chessboard[i][j] = '*';
    }
}
 
// King's position stored as char 'K' in
// chessboard[][]
chessboard[a][b] = 'K';
 
// for All Dark Green
// colored Squares
if (a == 1 && b == 1) {
    chessboard[2][3] = 'Q';
}
else if (a == 1 && b == 8) {
    chessboard[2][6] = 'Q';
}
else if (a == 8 && b == 1) {
    chessboard[7][3] = 'Q';
}
else if (a == 8 && b == 8) {
    chessboard[7][6] = 'Q';
}
 
// For all Orange colored Squares
else if (b == 1) {
    chessboard[a - 1][3] = 'Q';
    chessboard[a + 1][3] = 'R';
}
else if (a == 1) {
    chessboard[3][b - 1] = 'Q';
    chessboard[3][b + 1] = 'R';
}
else if (b == 8) {
    chessboard[a - 1][6] = 'Q';
    chessboard[a + 1][6] = 'R';
}
else if (a == 8) {
    chessboard[6][b - 1] = 'Q';
    chessboard[6][b + 1] = 'R';
}
 
// For all Sky Blue colored Squares
else if (a == 2 && b == 2) {
    chessboard[1][4] = 'Q';
    chessboard[3][4] = 'R';
    chessboard[4][3] = 'B';
}
else if (a == 2 && b == 7) {
    chessboard[1][5] = 'Q';
    chessboard[3][5] = 'R';
    chessboard[4][6] = 'B';
}
else if (a == 7 && b == 2) {
    chessboard[8][4] = 'Q';
    chessboard[6][4] = 'R';
    chessboard[5][3] = 'B';
}
else if (a == 7 && b == 7) {
    chessboard[8][5] = 'Q';
    chessboard[6][5] = 'R';
    chessboard[5][6] = 'B';
}
 
// For all light Green
// colored Squares
else if (a == 2 || a == 7 || b == 2 || b == 7) {
    if (a == 2) {
        chessboard[a - 1][b + 2] = 'Q';
        chessboard[a + 2][b - 1] = 'R';
        chessboard[a + 2][b] = 'B';
    }
    else if (a == 7) {
        chessboard[a + 1][b + 2] = 'Q';
        chessboard[a - 2][b - 1] = 'R';
        chessboard[a - 2][b] = 'B';
    }
    else if (b == 2) {
        chessboard[a - 1][b + 2] = 'Q';
        chessboard[a + 1][b + 2] = 'R';
        chessboard[a + 2][b + 1] = 'B';
    }
    else {
        chessboard[a - 1][b - 2] = 'Q';
        chessboard[a + 1][b - 2] = 'R';
        chessboard[a + 2][b - 1] = 'B';
    }
}
 
// For all Brown colored Squares
else {
    chessboard[a - 1][b + 2] = 'Q';
    chessboard[a + 1][b - 2] = 'R';
    chessboard[a + 2][b + 1] = 'B';
}
 
// Function to print chessboard
// along with position of Pieces
printer(chessboard);
 
// This code is contributed by lokeshmvs21.


Output

* * * * * * * * 
* * * * * * * * 
* * * * * Q * * 
* * * K * * * * 
* R * * * * * * 
* * * * B * * * 
* * * * * * * * 
* * * * * * * * 

Time Complexity: O(1), As only constant operations are made.
Auxiliary Space: O(1)  

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
01 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments