Sunday, September 7, 2025
HomeData Modelling & AITotal position where king can reach on a chessboard in exactly M...

Total position where king can reach on a chessboard in exactly M moves | Set 2

Given the position of the king on an 8 X 8 chessboard, the task is to count the total number of squares that can be visited by the king in m moves. The position of the king is denoted using row and column number. 
Note: The square which is currently acquired by the king is already visited and will be counted in the result.
Examples: 
 

Input: r = 4, c = 4, m = 1 
Output: 9
Input: r = 4, c = 4, m = 2 
Output: 25 

Approach: A king can move one square in any direction (i.e horizontally, vertically and diagonally). So, in one move king can visit its adjacent squares. 
 

King on chess

So, A square which is within m units distance (Considering 1 Square as 1 unit distance) from the king’s current position can be visited in m moves. 
For all squares of the chessboard, check if a particular square is at m unit distance away or less from King’s current position.

  1. Increment count, if step 1 is true.
  2. Print the count

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of squares
// that can be visited by king in m moves
int countSquares(int r, int c, int m)
{
 
    // To store the count of squares
    int squares = 0;
 
    // Check all squares of
    // the chessboard
    for (int i = 1; i <= 8; i++) {
        for (int j = 1; j <= 8; j++) {
 
            // Check if square (i, j) is
            // at a distance <= m units
            // from king's current position
            if (max(abs(i - r), abs(j - c)) <= m)
                squares++;
        }
    }
 
    // Return count of squares
    return squares;
}
 
// Driver code
int main()
{
    int r = 4, c = 4, m = 1;
 
    cout << countSquares(r, c, m) << endl;
 
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    // Function to return the count of squares
    // that can be visited by king in m moves
    static int countSquares(int r, int c, int m)
    {
        // To store the count of squares
        int squares = 0;
 
        // Check all squares of
        // the chessboard
        for (int i = 1; i <= 8; i++) {
            for (int j = 1; j <= 8; j++) {
 
                // Check if square (i, j) is
                // at a distance <= m units
                // from king's current position
                if (Math.max(Math.abs(i - r), Math.abs(j - c)) <= m)
                    squares++;
            }
        }
 
        // Return count of squares
        return squares;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int r = 4, c = 4, m = 1;
        System.out.print(countSquares(r, c, m));
    }
}


C#




// C# implementation of the approach
using System;
class GFG {
 
    // Function to return the count of squares
    // that can be visited by king in m moves
    static int countSquares(int r, int c, int m)
    {
        // To store the count of squares
        int squares = 0;
 
        // Check all squares of
        // the chessboard
        for (int i = 1; i <= 8; i++) {
            for (int j = 1; j <= 8; j++) {
 
                // Check if square (i, j) is
                // at a distance <= m units
                // from king's current position
                if (Math.Max(Math.Abs(i - r), Math.Abs(j - c)) <= m)
                    squares++;
            }
        }
 
        // Return count of squares
        return squares;
    }
 
    // Driver code
    public static void Main()
    {
        int r = 4, c = 4, m = 1;
        Console.Write(countSquares(r, c, m));
    }
}


Python3




# Python implementation of the approach
 
# Function to return the count of squares
# that can be visited by king in m moves
def countSquares(r, c, m):
 
    # To store the count of squares
    squares = 0
     
    # Check all squares of
    # the chessboard
    for i in range (1, 9):
        for j in range (1, 9):
             
            # Check if square (i, j) is
            # at a distance <= m units
            # from king's current position
            if(max(abs(i - r), abs(j - c)) <= m):
                squares = squares + 1
         
    # Return count of squares
    return squares
 
# Driver code
r = 4
c = 4
m = 1
 
print(countSquares(r, c, m));


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of squares
// that can be visited by king in m moves
function countSquares($r, $c, $m)
{
 
    // To store the count of squares
    $squares = 0;
 
    // Check all squares of
    // the chessboard
    for ($i = 1; $i <= 8; $i++)
    {
        for ($j = 1; $j <= 8; $j++)
        {
 
            // Check if square (i, j) is
            // at a distance <= m units
            // from king's current position
            if (max(abs($i - $r),
                    abs($j - $c)) <= $m)
                $squares++;
        }
    }
 
    // Return count of squares
    return $squares;
}
 
// Driver code
$r = 4;
$c = 4;
$m = 1;
 
echo countSquares($r, $c, $m);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach 
 
    // Function to return the count of squares
    // that can be visited by king in m moves
    function countSquares(r, c, m)
    {
        // To store the count of squares
        let squares = 0;
   
        // Check all squares of
        // the chessboard
        for (let i = 1; i <= 8; i++) {
            for (let j = 1; j <= 8; j++) {
   
                // Check if square (i, j) is
                // at a distance <= m units
                // from king's current position
                if (Math.max(Math.abs(i - r), Math.abs(j - c)) <= m)
                    squares++;
            }
        }
   
        // Return count of squares
        return squares;
    }
 
// Driver Code
 
         let r = 4, c = 4, m = 1;
        document.write(countSquares(r, c, m));
            
</script>


Output: 

9

 

Time Complexity: O(1), since the loop runs for a total of 64 times, that is constant time only.
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32271 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6642 POSTS0 COMMENTS
Nicole Veronica
11808 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11871 POSTS0 COMMENTS
Shaida Kate Naidoo
6755 POSTS0 COMMENTS
Ted Musemwa
7030 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS