Sunday, January 12, 2025
Google search engine
HomeData Modelling & AITotal number of unit cells covered by all given Rectangles

Total number of unit cells covered by all given Rectangles

Given a matrix A[][] consisting of coordinates of N rectangles such that {A[i][0], A[i][1]} representing bottom left coordinate of rectangle and {A[i][2], A[i][3]} representing top right coordinate of rectangle, the task is to find the total number of cells covered by all rectangles.
 

Examples: 
 

Input: N = 2, 
A[][] = {{1, 1, 3, 3}, {2, 1, 4, 2}} 
Output:
Explanation: 
 

First rectangle covers the following 4 cells: 
{(1, 1), (1, 2), (2, 2), (2, 1)}, {(1, 2), (1, 3), (2, 3), (2, 2)}, {(2, 1), (2, 2), (3, 2), (3, 1)}, {(2, 2), (2, 3), (3, 3), (3, 2)} 
Second rectangle encloses 2 cells: 
{(2, 1), (2, 2), (3, 2), (3, 1)}, {(3, 1), (3, 2), (4, 2), (4, 1)} 
Hence, both the rectangles cover 5 cells (since, 1 cell overlaps)

Input: N = 3, 
A[][] = {{1, 3, 4, 5}, {3, 1, 7, 4}, {5, 3, 8, 6}} 
Output: 24  

Approach: 
Follow the steps below to solve the problem: 

  1. Create a Boolean matrix arr[MAX][MAX], where arr[i][j] = 1 if(i, j) is enclosed by any of the given rectangles. Otherwise, arr[i][j] = 0.
  2. For every rectangle, iterate from bottom left to top right and for all (i, j) boxes mark them arr[i][j] = 1.
  3. Finally, we will maintain a variable area to store the number of cells enclosed. Increment area if arr[i][j] == 1.
  4. Print the final value of area.

Below is the implementation of the above approach :

C++




// C++ program to find the
// number of cells enclosed
// by the given rectangles
 
#include <bits/stdc++.h>
using namespace std;
#define MAX 1001
bool arr[MAX][MAX];
 
// Update the coordinates lying
// within the rectangle
void updateArray(int x1, int y1,
                int x2, int y2)
{
    for (int i = x1; i < x2; i++) {
        for (int j = y1; j < y2; j++) {
            // Update arr[i][j] for
            // all (i, j) lying within
            // the rectangle
            arr[i][j] = true;
        }
    }
}
 
// Function to return the total
// area covered by rectangles
int findAreaCovered()
{
    // Stores the number
    // of cells
    int area = 0;
 
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j < MAX; j++) {
            // arr[i]][[j]==1 means that grid
            // is filled by some rectangle
            if (arr[i][j] == true) {
                area++;
            }
        }
    }
 
    return area;
}
 
// Driver Code
int main()
{
    int N = 3;
 
    // (A[i][0], A[i][1]) denotes the
    // coordinate of the bottom
    // left of the rectangle
    // (A[i][2], A[i][3]) denotes the
    // coordinate of upper right
    // of the rectangle
    vector<vector<int> > A = {
        { 1, 3, 4, 5 },
        { 3, 1, 7, 4 },
        { 5, 3, 8, 6 }
    };
 
    // Update the coordinates that
    // lie within the rectangle
    for (int i = 0; i < N; i++) {
        updateArray(A[i][0], A[i][1],
                    A[i][2], A[i][3]);
    }
 
    int area = findAreaCovered();
    cout << area;
    return 0;
}


Java




// Java program to find the number
// of cells enclosed by the given
// rectangles
class GFG{
     
static final int MAX = 1001;
static boolean [][]arr = new boolean[MAX][MAX];
 
// Update the coordinates lying
// within the rectangle
static void updateArray(int x1, int y1,
                        int x2, int y2)
{
    for(int i = x1; i < x2; i++)
    {
        for(int j = y1; j < y2; j++)
        {
             
            // Update arr[i][j] for
            // all (i, j) lying within
            // the rectangle
            arr[i][j] = true;
        }
    }
}
 
// Function to return the total
// area covered by rectangles
static int findAreaCovered()
{
     
    // Stores the number
    // of cells
    int area = 0;
 
    for(int i = 0; i < MAX; i++)
    {
        for(int j = 0; j < MAX; j++)
        {
             
            // arr[i]][[j]==1 means that grid
            // is filled by some rectangle
            if (arr[i][j] == true)
            {
                area++;
            }
        }
    }
    return area;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3;
 
    // (A[i][0], A[i][1]) denotes the
    // coordinate of the bottom
    // left of the rectangle
    // (A[i][2], A[i][3]) denotes the
    // coordinate of upper right
    // of the rectangle
    int [][]A = { { 1, 3, 4, 5 },
                  { 3, 1, 7, 4 },
                  { 5, 3, 8, 6 } };
 
    // Update the coordinates that
    // lie within the rectangle
    for(int i = 0; i < N; i++)
    {
        updateArray(A[i][0], A[i][1],
                    A[i][2], A[i][3]);
    }
 
    int area = findAreaCovered();
    System.out.print(area);
}
}
 
// This code is contributed by amal kumar choubey


Python3




# Python3 program to find the
# number of cells enclosed
# by the given rectangles
MAX = 1001
arr = [[False for i in range(MAX)]
              for j in range(MAX)]
             
# Update the coordinates lying
# within the rectangle
def updateArray(x1, y1, x2, y2):
     
    for i in range(x1, x2):
        for j in range(y1, y2):
             
            # Update arr[i][j] for
            # all (i, j) lying within
            # the rectangle
            arr[i][j] = True
             
# Function to return the total
# area covered by rectangles
def findAreaCovered():
 
    # Stores the number
    # of cells
    area = 0
     
    for i in range(MAX):
        for j in range(MAX):
             
            # arr[i]][[j]==1 means that grid
            # is filled by some rectangle
            if arr[i][j]:
                area += 1
  
    return area
     
# Driver code
if __name__=="__main__":
     
    N = 3
  
    # (A[i][0], A[i][1]) denotes the
    # coordinate of the bottom
    # left of the rectangle
    # (A[i][2], A[i][3]) denotes the
    # coordinate of upper right
    # of the rectangle
    A = [ [ 1, 3, 4, 5 ],
          [ 3, 1, 7, 4 ],
          [ 5, 3, 8, 6 ] ];
         
    # Update the coordinates that
    # lie within the rectangle
    for i in range(N):
        updateArray(A[i][0], A[i][1],
                    A[i][2], A[i][3]);
 
    area = findAreaCovered();
    print(area)
 
# This code is contributed by rutvik_56


C#




// C# program to find the number
// of cells enclosed by the given
// rectangles
using System;
 
class GFG{
     
static readonly int MAX = 1001;
static bool [,]arr = new bool[MAX, MAX];
 
// Update the coordinates lying
// within the rectangle
static void updateArray(int x1, int y1,
                        int x2, int y2)
{
    for(int i = x1; i < x2; i++)
    {
        for(int j = y1; j < y2; j++)
        {
             
            // Update arr[i,j] for
            // all (i, j) lying within
            // the rectangle
            arr[i, j] = true;
        }
    }
}
 
// Function to return the total
// area covered by rectangles
static int findAreaCovered()
{
     
    // Stores the number
    // of cells
    int area = 0;
 
    for(int i = 0; i < MAX; i++)
    {
        for(int j = 0; j < MAX; j++)
        {
             
            // arr[i],[j]==1 means that grid
            // is filled by some rectangle
            if (arr[i, j] == true)
            {
                area++;
            }
        }
    }
    return area;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 3;
 
    // (A[i,0], A[i,1]) denotes the
    // coordinate of the bottom
    // left of the rectangle
    // (A[i,2], A[i,3]) denotes the
    // coordinate of upper right
    // of the rectangle
    int [,]A = { { 1, 3, 4, 5 },
                 { 3, 1, 7, 4 },
                 { 5, 3, 8, 6 } };
 
    // Update the coordinates that
    // lie within the rectangle
    for(int i = 0; i < N; i++)
    {
        updateArray(A[i, 0], A[i, 1],
                    A[i, 2], A[i, 3]);
    }
 
    int area = findAreaCovered();
    Console.Write(area);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program for the above approach
 
let MAX = 1001;
let arr = new Array(MAX);
for (var i = 0; i < arr.length; i++) {
    arr[i] = new Array(2);
}
 
// Update the coordinates lying
// within the rectangle
function updateArray(x1, y1, x2, y2)
{
    for(let i = x1; i < x2; i++)
    {
        for(let j = y1; j < y2; j++)
        {
             
            // Update arr[i][j] for
            // all (i, j) lying within
            // the rectangle
            arr[i][j] = true;
        }
    }
}
 
// Function to return the total
// area covered by rectangles
function findAreaCovered()
{
     
    // Stores the number
    // of cells
    let area = 0;
 
    for(let i = 0; i < MAX; i++)
    {
        for(let j = 0; j < MAX; j++)
        {
             
            // arr[i]][[j]==1 means that grid
            // is filled by some rectangle
            if (arr[i][j] == true)
            {
                area++;
            }
        }
    }
    return area;
}
 
// Driver Code
 
    let N = 3;
 
    // (A[i][0], A[i][1]) denotes the
    // coordinate of the bottom
    // left of the rectangle
    // (A[i][2], A[i][3]) denotes the
    // coordinate of upper right
    // of the rectangle
    let A = [[ 1, 3, 4, 5 ],
                  [ 3, 1, 7, 4 ],
                  [ 5, 3, 8, 6 ]];
 
    // Update the coordinates that
    // lie within the rectangle
    for(let i = 0; i < N; i++)
    {
        updateArray(A[i][0], A[i][1],
                    A[i][2], A[i][3]);
    }
 
    let area = findAreaCovered();
    document.write(area);
 
</script>


Output: 

24

Time Complexity : O (N 3) 
Auxiliary Space : O (N 2)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments