Given a number N which is the size of the set and a number K, the task is to find the count of subsets, of the set of N elements, having at most K elements in it, i.e. the size of subset is less than or equal to K.
Examples:
Input: N = 3, K = 2
Output: 6
Subsets with 1 element in it = {1}, {2}, {3}
Subsets with 2 elements in it = {1, 2}, {1, 3}, {1, 2}
Since K = 2, therefore only the above subsets will be considered for length atmost K. Therefore the count is 6.
Input: N = 5, K = 2
Output: 15
Approach:
- Since the number of subsets of exactly K elements that can be made from N items is (NCK). Therefore for “at most”, the required count will be
- Inorder to calculate the value of NCK, Binomial Coefficient is used. Please refer this article to see how it works.
- So to get the required subsets for length atmost K, run a loop from 1 to K and add the NCi for each value of i.
Below is the implementation of the above approach:
C++
// C++ code to find total number of // Subsets of size at most K #include <bits/stdc++.h> using namespace std; // Function to compute the value // of Binomial Coefficient C(n, k) int binomialCoeff( int n, int k) { int C[n + 1][k + 1]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // Function to calculate sum of // nCj from j = 1 to k int count( int n, int k) { int sum = 0; for ( int j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum; } // Driver code int main() { int n = 3, k = 2; cout << count(n, k) << endl; n = 5, k = 2; cout << count(n, k) << endl; return 0; } |
Java
// Java code to find total number of // Subsets of size at most K import java.lang.*; class GFG { // Function to compute the value // of Binomial Coefficient C(n, k) public static int binomialCoeff( int n, int k) { int [][] C = new int [n + 1 ][k + 1 ]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0 ; i <= n; i++) { for (j = 0 ; j <= Math.min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1 ; // Calculate value using previously // stored values else C[i][j] = C[i - 1 ][j - 1 ] + C[i - 1 ][j]; } } return C[n][k]; } // Function to calculate sum of // nCj from j = 1 to k public static int count( int n, int k) { int sum = 0 ; for ( int j = 1 ; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum; } // Driver code public static void main(String args[]) { GFG g = new GFG(); int n = 3 , k = 2 ; System.out.print(count(n, k)); int n1 = 5 , k1 = 2 ; System.out.print(count(n1, k1)); } } // This code is contributed by SoumikMondal |
Python3
# Python code to find total number of # Subsets of size at most K # Function to compute the value # of Binomial Coefficient C(n, k) def binomialCoeff(n, k): C = [[ 0 for i in range (k + 1 )] for j in range (n + 1 )]; i, j = 0 , 0 ; # Calculate value of Binomial Coefficient # in bottom up manner for i in range (n + 1 ): for j in range ( min (i, k) + 1 ): # Base Cases if (j = = 0 or j = = i): C[i][j] = 1 ; # Calculate value using previously # stored values else : C[i][j] = C[i - 1 ][j - 1 ] + C[i - 1 ][j]; return C[n][k]; # Function to calculate sum of # nCj from j = 1 to k def count(n, k): sum = 0 ; for j in range ( 1 , k + 1 ): # Calling the nCr function # for each value of j sum = sum + binomialCoeff(n, j); return sum ; # Driver code if __name__ = = '__main__' : n = 3 ; k = 2 ; print (count(n, k), end = ""); n1 = 5 ; k1 = 2 ; print (count(n1, k1)); # This code is contributed by 29AjayKumar |
C#
// C# code to find total number of // Subsets of size at most K using System; class GFG { // Function to compute the value // of Binomial Coefficient C(n, k) public static int binomialCoeff( int n, int k) { int [,] C = new int [n + 1, k + 1]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.Min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i, j] = 1; // Calculate value using previously // stored values else C[i, j] = C[i - 1, j - 1] + C[i - 1, j]; } } return C[n, k]; } // Function to calculate sum of // nCj from j = 1 to k public static int count( int n, int k) { int sum = 0; for ( int j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum; } // Driver code public static void Main() { int n = 3, k = 2; Console.Write(count(n, k)); int n1 = 5, k1 = 2; Console.Write(count(n1, k1)); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation of the // above approach // Function for the binomial coefficient function binomialCoeff(n, k) { var C = new Array(n + 1); // Loop to create 2D array using 1D array for ( var i = 0; i < C.length; i++) { C[i] = new Array(k + 1); } var i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // Function to calculate sum of // nCj from j = 1 to k function count(n, k) { var sum = 0; for ( var j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum; } // Driver code var n = 3; var k = 2; document.write(count(n, k)); var n = 5; var k = 2; document.write(count(n, k)); // This code is contributed by ShubhamSingh10 </script> |
6 15
Time Complexity: O(n2 * k)
Auxiliary Space: O(n + k)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!