Given the number of vertices in a Cycle graph. The task is to find the Total number of Spanning trees possible.
Note: A cycle/circular graph is a graph that contains only one cycle. A spanning tree is the shortest/minimum path in a graph that covers all the vertices of a graph.
Examples:
Input: Vertices = 3 Output: Total Spanning tree = 3 Input: Vertices = 4 Output: Total Spanning tree = 4
Example 1:
For Cycle Graph with vertices = 3
Spanning Tree possible is 3
Example 2:
For Cycle Graph with vertices = 4
Spanning Tree possible is 4
So, the number of spanning trees will always be equal to the number of vertices in a cycle graph.
Implementation:
C++
// C++ program to find number of // spanning trees #include <bits/stdc++.h> using namespace std; // function that calculates the // total Spanning tree int Spanning( int vertices) { int result = 0; result = vertices; return result; } // Driver code int main() { int vertices = 4; cout << "Spanning tree = " << Spanning(vertices); return 0; } |
Java
// Java program to find number of // spanning trees import java.io.*; class GFG { // function that calculates the // total Spanning tree static int Spanning( int vertices) { int result = 0 ; result = vertices; return result; } // Driver code public static void main (String[] args) { int vertices = 4 ; System.out.println( "Spanning tree = " + Spanning(vertices)); } } // This code is contributed // by chandan_jnu.. |
Python3
# Python program to find number of # spanning trees # function that calculates the # total Spanning tree def Spanning( vertices): result = 0 result = vertices return result # Driver code vertices = 4 print ( "Spanning tree = " , Spanning(vertices)) # This code is contributed # by Sanjit_Prasad |
C#
// C# program to find number // of spanning trees using System; // function that calculates // the total Spanning tree class GFG { public int Spanning( int vertices) { int result = 0; result = vertices; return result; } // Driver code public static void Main() { GFG g = new GFG(); int vertices = 4; Console.WriteLine( "Spanning tree = {0}" , g.Spanning(vertices)); } } // This code is contributed // by Soumik |
PHP
<?php // PHP program to find number of // spanning trees // function that calculates the // total Spanning tree function Spanning( $vertices ) { $result = 0; $result = $vertices ; return $result ; } // Driver code $vertices = 4; echo "Spanning tree = " . Spanning( $vertices ); // This code is contributed // by Ankita Saini ?> |
Javascript
<script> // Javascript program to find number of // spanning trees // Function that calculates the // total Spanning tree function Spanning(vertices) { result = 0; result = vertices; return result; } // Driver code var vertices = 4; document.write( "Spanning tree = " + Spanning(vertices)); // This code is contributed by noob2000 </script> |
Spanning tree = 4
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!