Friday, January 3, 2025
Google search engine

Tiling with Dominoes

Given a 3 x n board, find the number of ways to fill it with 2 x 1 dominoes.
Example 1:

Following are all the 3 possible ways to fill up a 3 x 2 board. 

Example 2:

Here is one possible way of filling a 3 x 8 board. You have to find all the possible ways to do so. 

Examples : 

Input : 2
Output : 3

Input : 8
Output : 153

Input : 12
Output : 2131

Defining Subproblems: 
At any point while filling the board, there are three possible states that the last column can be in: 
 

An =  No. of ways to completely fill a 3 x n board. (We need to find this)
Bn =  No. of ways to fill a 3 x n board with top corner in last column not filled.
Cn =  No. of ways to fill a 3 x n board with bottom corner in last column not filled.

Note: The following states are impossible to reach: 

Finding Recurrences 
Note: Even though Bn and Cn are different states, they will be equal for same ‘n’. i.e Bn = Cn 
Hence, we only need to calculate one of them.
Calculating An: 


A_{n} = A_{n-2} + B_{n-1} + C_{n-1}
A_{n} = A_{n-2} + 2*(B_{n-1})
Calculating Bn: 

B_{n} = A_{n-1} + B_{n-2}
The final Recursive Relations are: 

A_{n} = A_{n-2} + 2*(B_{n-1}) \hspace{0.5cm} B_{n} = A_{n-1} + B_{n-2}

Base Cases: 

A_0 = 1 , A_1 = 0 \hspace{0.5cm} B_0 = 0 , B_1 = 1

C++




// C++ program to find no. of ways
// to fill a 3xn board with 2x1 dominoes.
#include <iostream>
using namespace std;
 
int countWays(int n)
{
    int A[n + 1], B[n + 1];
    A[0] = 1, A[1] = 0, B[0] = 0, B[1] = 1;
    for (int i = 2; i <= n; i++) {
        A[i] = A[i - 2] + 2 * B[i - 1];
        B[i] = A[i - 1] + B[i - 2];
    }
 
    return A[n];
}
 
int main()
{
    int n = 8;
    cout << countWays(n);
    return 0;
}


Java




// Java program to find no. of ways
// to fill a 3xn board with 2x1 dominoes.
import java.io.*;
 
class GFG {
 
    static int countWays(int n)
    {
        int []A = new int[n+1];
        int []B = new int[n+1];
        A[0] = 1; A[1] = 0;
        B[0] = 0; B[1] = 1;
        for (int i = 2; i <= n; i++)
        {
            A[i] = A[i - 2] + 2 * B[i - 1];
            B[i] = A[i - 1] + B[i - 2];
        }
     
        return A[n];
    }
 
    // Driver code
    public static void main (String[] args)
    {
        int n = 8;
        System.out.println(countWays(n));
    }
}
 
// This code is contributed by anuj_67.


Python 3




# Python 3 program to find no. of ways
# to fill a 3xn board with 2x1 dominoes.
 
def countWays(n):
 
    A = [0] * (n + 1)
    B = [0] * (n + 1)
    A[0] = 1
    A[1] = 0
    B[0] = 0
    B[1] = 1
    for i in range(2, n+1):
        A[i] = A[i - 2] + 2 * B[i - 1]
        B[i] = A[i - 1] + B[i - 2]
     
    return A[n]
 
n = 8
print(countWays(n))
 
# This code is contributed by Smitha


C#




// C# program to find no. of ways
// to fill a 3xn board with 2x1 dominoes.
using System;
 
class GFG {
 
    static int countWays(int n)
    {
        int []A = new int[n+1];
        int []B = new int[n+1];
        A[0] = 1; A[1] = 0;
        B[0] = 0; B[1] = 1;
        for (int i = 2; i <= n; i++)
        {
            A[i] = A[i - 2] + 2 * B[i - 1];
            B[i] = A[i - 1] + B[i - 2];
        }
     
        return A[n];
    }
 
    // Driver code
    public static void Main ()
    {
        int n = 8;
        Console.WriteLine(countWays(n));
    }
}
 
// This code is contributed by anuj_67.


Javascript




<script>
    // Javascript program to find no. of ways
    // to fill a 3xn board with 2x1 dominoes.
     
    function countWays(n)
    {
        let A = new Array(n+1);
        let B = new Array(n+1);
        A[0] = 1; A[1] = 0;
        B[0] = 0; B[1] = 1;
        for (let i = 2; i <= n; i++)
        {
            A[i] = A[i - 2] + 2 * B[i - 1];
            B[i] = A[i - 1] + B[i - 2];
        }
       
        return A[n];
    }
     
    let n = 8;
      document.write(countWays(n));
     
    // This code is contributed by rameshtravel07.
</script>


PHP




<?php
// PHP program to find no. of ways
// to fill a 3xn board with 2x1 dominoes.
 
function countWays($n)
{
    $A = array();
    $B = array();
    $A[0] = 1; $A[1] = 0;
    $B[0] = 0; $B[1] = 1;
    for ( $i = 2; $i <= $n; $i++)
    {
        $A[$i] = $A[$i - 2] + 2 *
                 $B[$i - 1];
        $B[$i] = $A[$i - 1] +
                 $B[$i - 2];
    }
 
    return $A[$n];
}
 
// Driver Code
$n = 8;
echo countWays($n);
 
// This code is contributed by anuj_67.
?>


Output

153

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments