Friday, January 10, 2025
Google search engine
HomeData Modelling & AITetracontaoctagonal Number

Tetracontaoctagonal Number

Given a number N, the task is to find Nth Tetracontaoctagon number.
 

A Tetracontaoctagon number is a class of figurate numbers. It has a 48-sided polygon called Tetracontaoctagon. The N-th Tetracontaoctagonal number count’s the 48 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few Tetracontaoctagonol numbers are 1, 48, 141, 280, 465, 696, … 
 

Examples: 
 

Input: N = 2 
Output: 48 
Explanation: 
The second Tetracontaoctagonol number is 48. 
Input: N = 3 
Output: 141 
 

 

Approach: The N-th Tetracontaoctagonal number is given by the formula:
 

  • Nth term of s sided polygon = \frac{((s-2)n^2 - (s-4)n)}{2}
     
  • Therefore Nth term of 48 sided polygon is
     

Tn =\frac{((48-2)n^2 - (48-4)n)}{2} =\frac{(46^2 - 44)}{2}

  •  

Below is the implementation of the above approach:
 

C++




// C++ implementation for
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the
// nth Tetracontaoctagonal Number
int TetracontaoctagonalNum(int n)
{
    return (46 * n * n - 44 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
    cout << TetracontaoctagonalNum(n);
 
    return 0;
}


Java




// Java program for above approach
class GFG{
 
// Function to find the
// nth TetracontaoctagonalNum Number
static int TetracontaoctagonalNum(int n)
{
    return (46 * n * n - 44 * n) / 2;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    System.out.print(TetracontaoctagonalNum(n));
}
}
 
// This code is contributed by shubham


Python3




# Python3 Cimplementation for
# above approach
 
# Function to find the
# nth Tetracontaoctagonal Number
def TetracontaoctagonalNum(n):
 
    return (46 * n * n - 44 * n) / 2;
 
# Driver Code
n = 3;
print(TetracontaoctagonalNum(n));
 
# This code is contributed by Code_Mech


C#




// C# program for above approach
using System;
class GFG{
 
// Function to find the
// nth TetracontaoctagonalNum Number
static int TetracontaoctagonalNum(int n)
{
    return (46 * n * n - 44 * n) / 2;
}
 
// Driver code
public static void Main()
{
    int n = 3;
    Console.Write(TetracontaoctagonalNum(n));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
// Javascript implementation for
// above approach
 
// Function to find the
// nth Tetracontaoctagonal Number
function TetracontaoctagonalNum(n)
{
    return (46 * n * n - 44 * n) / 2;
}
 
// Driver Code
var n = 3;
document.write(TetracontaoctagonalNum(n));
 
 
</script>


Output: 

141

 

Reference: https://en.wikipedia.org/wiki/Tetracontaoctagon

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
18 Mar, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments