TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
expint() function
expint() is used to compute element wise Exponential integral of x. It is defined as the integral of exp(t) / t from -inf to x, with the domain of definition all positive real numbers.
Syntax: tensorflow.math.special.expint( x, name)
Parameter:
- x: It’s a Tensor or Sparse Tensor. Allowed dtypes are float32 and float64.
- name(optional): It defines name for the operation.
Returns: It returns a Tensor of same dtype as x.
Example 1:
Python3
# importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([ [ - 5 , - 7 ],[ 2 , 0 ]], dtype = tf.float64) # Printing the input tensor print ( 'a: ' , a) # Calculating result res = tf.math.special.expint(a) # Printing the result print ( 'Result: ' , res) |
Output:
a: tf.Tensor( [[-5. -7.] [ 2. 0.]], shape=(2, 2), dtype=float64) Result: tf.Tensor( [[ nan nan] [4.95423436 -inf]], shape=(2, 2), dtype=float64)
Example 2:
Python3
# importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([ 1 , 2 , 3 , 4 , 5 ], dtype = tf.float64) # Printing the input tensor print ( 'a: ' , a) # Calculating result res = tf.math.special.expint(a) # Printing the result print ( 'Result: ' , res) |
Output:
a: tf.Tensor([1. 2. 3. 4. 5.], shape=(5,), dtype=float64)
Result: tf.Tensor([ 1.89511782 4.95423436 9.93383257 19.63087447 40.18527536], shape=(5,), dtype=float64)