TensorFlow is an open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks in the browser or node environment.
The tf.Variable class is used to make a new mutable tf.Tensor and is provided with an assign value that copies the tf.Tensor to this new variable containing the same shape and dtype.
tf.Variable class extends tf.Tensor class.
Syntax:
tensorflow.Variable(initialTensor)
Parameters:
- initialTensor: It is the initial tensor that is assigned to the Variable class object.
Return Value: It returns nothing (i.e. void).
Example 1: This example only uses the initial value to create tf.Variable object. No optional parameters are passed.
Javascript
// Defining tf.Tensor object for initial value initialValue = tf.tensor([[1, 2, 3]]) // Defining tf.Variable object const x = new tf.Variable(initialValue); // Checking variables dtype console.log( "dtype:" , x.dtype) // Checking variable shape console.log( "shape:" , x.shape) // Printing the tf.Variable object x.print() |
Output:
dtype: float32 shape: 1,3 Tensor [[1, 2, 3],]
Example 2: This example uses optional parameters along with the initial value to create a Variable object.
Javascript
// Defining tf.Tensor object for initial value initialValue = tf.tensor([[1, 2, 3]]) // Defining tf.Variable object const x = new tf.Variable(initialValue, false , 'example_variable' , 'int32' ); // Checking if variable is trainable console.log( "Is trainable:" , x.trainable) // Checking variables dtype console.log( "dtype:" , x.dtype) // Checking variable shape console.log( "shape:" , x.shape) // Checking variable name console.log( "Name:" , x.name) // Printing the tf.Variable object x.print() |
Output:
Is trainable: false dtype: int32 shape: 1,3 Name: example_variable Tensor [[1, 2, 3],]
Example 3: This example creates a tf.Variable object using initial value then again adds the initial value to the Variable.
Javascript
// Defining tf.Tensor object for initial value initialValue = tf.tensor([[1, 2, 3]]) // Defining tf.Variable object const x = new tf.Variable(initialValue); // Printing the tf.Variable object x.print() // Adding initial value Tensor to Variable result = x.add(initialValue) // Printing result result.print() |
Output:
Tensor [[1, 2, 3],] Tensor [[2, 4, 6],]