Thursday, September 4, 2025
HomeLanguagesJavascriptTensorflow.js tf.range() Function

Tensorflow.js tf.range() Function

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The tf. range() is used to create a new tf.Tensor1D filled with the numbers in the range provided with the help of start, stop, step, and dtype.

Syntax:

tf.range(start, stop, step, dtype)

Parameters:

  • start: It is an integer start value that denotes the starting number of the range.
  • stop: It is an integer stop value that denotes the ending number of the range, and it is not included.
  • step: It is an integer increment which is 1 or -1 by default. It is an optional parameter.
  • dtype: It is the data type of the output tensor. It defaults to ‘float32’. It is an optional parameter.

Return Value: It returns a new Tensor1D object.

Example 1: In this example, we try to generate a range of numbers from 1 to 9 with default step 1.

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor1D array by tf.range
var val = tf.range(1,10);
  
// Printing the tensor
val.print()


Output:

Tensor
    [1, 2, 3, 4, 5, 6, 7, 8, 9]

Example 2: In this example, we try to generate odd numbers between 1 and 10 using step size 2.

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor1D array by tf.range
var val = tf.range(1,10,2);
  
// Printing the tensor
val.print()


Output:

Tensor
    [1, 3, 5, 7, 9]

Example 3: In this example, we try to generate even numbers between 0 and 10 using step size 2.

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor1D array by tf.range
var val = tf.range(0,10,2);
  
// Printing the tensor
val.print()


Output:

Tensor
    [0, 2, 4, 6, 8],

Example 4: In this example, we will try to use the dtype parameter.

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating the tensor1D array by tf.range
var val = tf.range(-1,1,1,'bool');
  
// Printing the tensor
val.print()


Output:

​Tensor
    [true, false]

Reference:https://js.tensorflow.org/api/latest/#range

Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!
RELATED ARTICLES

Most Popular

Dominic
32261 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6695 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS