Thursday, January 9, 2025
Google search engine
HomeLanguagesJavascriptTensorflow.js tf.io.removeModel() Function

Tensorflow.js tf.io.removeModel() Function

Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment.

The .removeModel() function is used to remove a stated model by means of a URL provided from a recorded repository medium.

Syntax:

tf.io.removeModel(url)

Parameters:  

  • url: It is the stated URL within a recorded model, along with a pattern prefix i.e. ‘localstorage://my-mode-2’, ‘indexeddb://my/mode/3’. It is of type string.

Return Value: It returns Promise of ModelArtifactsInfo.

Example 1: Using “logSigmoid” as activation, “Local Storage” as the storage medium.

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Creating model
const mymodel = tf.sequential();
 
// Calling add() method
mymodel.add(tf.layers.dense(
     {units: 3, inputShape: [20], stimulation: 'logSigmoid'}));
 
// Calling save() method with a storage medium
 
// Calling removeModel() method
await tf.io.removeModel('localstorage://display/command/mymodel1');
 
// Calling listModels() method and
// Printing output
console.log(await tf.io.listModels());


Output: 

{
  "localstorage://demo/manage/model1": {
    "dateSaved": "2021-06-24T11:53:05.626Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "localstorage://demo/management/model1": {
    "dateSaved": "2021-06-24T11:52:29.368Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 611,
    "weightSpecsBytes": 124,
    "weightDataBytes": 44
  },
  "localstorage://demo/management/model2": {
    "dateSaved": "2021-06-24T11:53:33.384Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "localstorage://demo/management/model": {
    "dateSaved": "2021-06-24T11:53:26.006Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "localstorage://display/command/mymodel2": {
    "dateSaved": "2021-06-24T19:02:03.367Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 612,
    "weightSpecsBytes": 125,
    "weightDataBytes": 32
  },
  "indexeddb://demo/management/model1": {
    "dateSaved": "2021-06-24T13:02:20.265Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 614,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "indexeddb://display/command/mymodel": {
    "dateSaved": "2021-06-24T18:50:50.602Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 252
  },
  "indexeddb://display/command/mymodel1": {
    "dateSaved": "2021-06-24T18:59:17.435Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 612,
    "weightSpecsBytes": 125,
    "weightDataBytes": 32
  },
  "indexeddb://example/command/mymodel": {
    "dateSaved": "2021-06-24T12:33:06.208Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 1428
  }
}

Example 2: Using “prelu” as activation, “IndexedDB” as a storage medium, and “JSON.stringify” in order to return the output in string format.

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Creating model
const mymodel = tf.sequential();
 
// Calling add() method
mymodel.add(tf.layers.dense(
     {units: 11, inputShape: [6], stimulation: 'prelu'}));
 
// Calling save() method with a storage medium
 
// Calling removeModel() method
await tf.io.removeModel('indexeddb://display/command/mymodel1');
 
// Calling listModels() method and
// Printing output
console.log(JSON.stringify(await tf.io.listModels()));


Output: 

{
  "localstorage://demo/manage/model1": {
    "dateSaved": "2021-06-24T11:53:05.626Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "localstorage://demo/management/model1": {
    "dateSaved": "2021-06-24T11:52:29.368Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 611,
    "weightSpecsBytes": 124,
    "weightDataBytes": 44
  },
  "localstorage://demo/management/model2": {
    "dateSaved": "2021-06-24T11:53:33.384Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "localstorage://demo/management/model": {
    "dateSaved": "2021-06-24T11:53:26.006Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "localstorage://display/command/mymodel2": {
    "dateSaved": "2021-06-24T19:02:03.367Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 612,
    "weightSpecsBytes": 125,
    "weightDataBytes": 32
  },
  "indexeddb://demo/management/model1": {
    "dateSaved": "2021-06-24T13:02:20.265Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 614,
    "weightSpecsBytes": 126,
    "weightDataBytes": 44
  },
  "indexeddb://display/command/mymodel": {
    "dateSaved": "2021-06-24T18:50:50.602Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 252
  },
  "indexeddb://example/command/mymodel": {
    "dateSaved": "2021-06-24T12:33:06.208Z",
    "modelTopologyType": "JSON",
    "modelTopologyBytes": 613,
    "weightSpecsBytes": 126,
    "weightDataBytes": 1428
  }
}

Reference: https://js.tensorflow.org/api/latest/#io.removeModel

 

Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!

RELATED ARTICLES

Most Popular

Recent Comments