Tensorflow.js is a very well-known machine learning library that used to develop a machine learning model using JavaScript. The main purpose to use this library is to run and deploy a machine learning model directly from the browser or in Node.js. Tensorflow.js is an open-source hardware-accelerated JavaScript library. In this article, we’re going to discuss tf.ones() function in Tensorflow.js.
tf.ones() creates a Tensor with all elements set to 1, or it initializes tensor with value 1.
Syntax:
tf.ones (shape, dtype)
Parameters:
- Shape: This represents the shape of the result array. The shape is an array of integer which represent a number of row and columns.
- dtype: These are a type of the values which return in result. The default value of type is float. It can be int32,complex64,bool, string or float32.
Return type:
This method returns the tensor of type dtype with the shape of order (row*column) and initialized with 1.
Example 1: In this example, we are going to create a tensor of order 3*4 and applying tf.ones() on it.
Javascript
//import tensorflow.js const tf=require( "@tensorflow/tfjs" ) //use tf.ones() var GFG=tf.ones([3, 4]); //print tensor GFG.print() |
Output:
Tensor [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
Example 2: In this example, we are going to create a tensor of order 1×4 by giving a single element in a shape array.
Javascript
//import tensorflow.js const tf=require( "@tensorflow/tfjs" ) //create tensor of shape 1*4 var GFG=tf.ones([3]); //print tensor GFG.print() |
Output
Tensor [1, 1, 1]
Example 3: tf.ones() with different dtype.
Javascript
//import tensorflow.js const tf=require( "@tensorflow/tfjs" ) // create tensor with default dtype as float32 tf.ones([3, 3]).print(); // create tensor with complex values tf.ones([3, 3], 'complex64' ).print(); // create tensor with boolean values by default all // values true because initialization by ones tf.ones([3, 3], 'bool' ).print(); //create tensor with integer values tf.ones([3, 3], 'int32' ).print(); |
Output:
Tensor [[1, 1, 1], [1, 1, 1], [1, 1, 1]] Tensor [[1 + 0j, 1 + 0j, 1 + 0j], [1 + 0j, 1 + 0j, 1 + 0j], [1 + 0j, 1 + 0j, 1 + 0j]] Tensor [[true, true, true], [true, true, true], [true, true, true]] Tensor [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
Reference:https://js.tensorflow.org/api/latest/#initializers.ones