Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. The tf.initializers.Initializer() class is used to extend serialization.Serializable class. It is the base class of Initializer.
This tf.initializers.Initializer class contains fifteen inbuilt functions which are illustrated below:
- tf.initializers.Initializer class .constant() function
- tf.initializers.Initializer class .glorotNormal() function
- tf.initializers.Initializer class .glorotUniform() function
- tf.initializers.Initializer class .heNormal() function
- tf.initializers.Initializer class .heUniform() function
- tf.initializers.Initializer class .identity() function
- tf.initializers.Initializer class .leCunNormal() function
- tf.initializers.Initializer class .leCunUniform() function
- tf.initializers.Initializer class .ones() function
- tf.initializers.Initializer class .orthogonal() function
- tf.initializers.Initializer class .randomNormal() function
- tf.initializers.Initializer class .randomUniform() function
- tf.initializers.Initializer class .truncatedNormal() function
- tf.initializers.Initializer class .varianceScaling() function
- tf.initializers.Initializer class .zeros() function
1. tf.initializers.Initializer class .constant() function: It is used to generate the values initialized to some constant.
Example:
Javascript
// Importing the tensorflow.js library const tf = require( "@tensorflow/tfjs" ) // Use tf.initializers.constant() function var initializer = tf.initializers.constant({ value: 7, }) // Print the value of constant console.log(initializer); |
Output:
Constant { value: 7 }
2. tf.initializers.Initializer class .glorotNormal() function: It extract samples from a truncated normal distribution which is been centered at 0 with stddev = sqrt(2 / (fan_in + fan_out)). Note, that the fan_in is the number of inputs in the tensor weight and the fan_out is the number of outputs in the tensor weight.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.glorotNormal() function console.log(tf.initializers.glorotNormal(9)); // Printing Individual gainvalues console.log( '\nIndividual values:\n' ); console.log(tf.initializers.glorotNormal(9).scale); console.log(tf.initializers.glorotNormal(9).mode); console.log(tf.initializers.glorotNormal(9).distribution); |
Output:
{ "scale": 1, "mode": "fanAvg", "distribution": "normal" } Individual values: 1 fanAvg normal
3. tf.initializers.Initializer class .glorotUniform() function: It is used to extract samples from a uniform distribution within [-limit, limit] where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan out is the number of output units in the weight tensor.
Example:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.glorotUniform() function const geek = tf.initializers.glorotUniform(7) // Printing gain value console.log(geek); // Printing individual values from gain console.log( '\nIndividual values:\n' ); console.log(geek.scale); console.log(geek.mode); console.log(geek.distribution); |
Output:
{ "scale": 1, "mode": "fanAvg", "distribution": "uniform" } Individual values: 1 fanAvg uniform
4. tf.initializers.Initializer class .heNormal() function: It is used to draw samples from a truncated normal distribution centered on zero with stddev = sqrt(2 / fanIn) within [-limit, limit] where, limit is sqrt(6 / fan_in). Note, that the fanIn is the number of inputs in the tensor weight.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.heNormal() // function const geek = tf.initializers.heNormal(7) // Printing gain console.log(geek); console.log( '\nIndividual values:\n' ); console.log(geek.scale); console.log(geek.mode); console.log(geek.distribution); |
Output:
{ "scale": 2, "mode": "fanIn", "distribution": "normal" } Individual values: 2 fanIn normal
5. tf.initializers.Initializer class .heUniform() function: It draws samples from a uniform distribution within [-cap, cap] where, cap is sqrt(6 / fan_in). Note, that the fanIn is the number of inputs in the tensor weight.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.heUniform() function const geek = tf.initializers.heUniform(7) // Printing gain console.log(geek); console.log( '\nIndividual values:\n' ); console.log(geek.scale); console.log(geek.mode); console.log(geek.distribution); |
Output:
{ "scale": 2, "mode": "fanIn", "distribution": "uniform" } Individual values: 2 fanIn uniform
6. tf.initializers.Initializer class .identity() function: It is used to return a new tensor object with an identity matrix. Its only used for 2D matrices.
Example:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Generates the identity matrix const value=tf.initializers.identity(1.0) // Print gain console.log(value) |
Output:
{ "gain": 1 }
7. tf.initializers.Initializer class .leCunNormal() function: It is used to extract samples from a truncated normal distribution which is centered at zero with stddev = sqrt(1 / fanIn). Note, that fanIn is the number of inputs in the tensor weight.
Example:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.leCunNormal() function const geek = tf.initializers.leCunNormal(3) // Printing gain console.log(geek); console.log( '\nIndividual values:\n' ); console.log(geek.scale); console.log(geek.mode); console.log(geek.distribution); |
Output:
{ "scale": 1, "mode": "fanIn", "distribution": "normal" } Individual values: 1 fanIn normal
8. tf.initializers.Initializer class .leCunUniform() function: It takes samples from a uniform distribution in the interval [-cap, cap] with cap = sqrt(3 / fanIn). Note, that fanIn is the number of inputs in the tensor weight.
Example:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Initialising the .initializers.leCunUniform() function console.log(tf.initializers.leCunUniform(4)); // Printing individual values from the gain console.log( "\nIndividual Values\n" ); console.log(tf.initializers.leCunUniform(4).scale); console.log(tf.initializers.leCunUniform(4).mode); console.log(tf.initializers.leCunUniform(4).distribution); |
Output:
{ "scale": 1, "mode": "fanIn", "distribution": "uniform" } Individual Values 1 fanIn uniform
9. tf.initializers.Initializer class .ones() function: It is used to create a tensor with all elements set to 1, or it initializes tensor with value 1.
Example:
Javascript
//import tensorflow.js const tf=require( "@tensorflow/tfjs" ) //use tf.ones() var GFG=tf.ones([3, 4]); //print tensor GFG.print() |
Output:
Tensor [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
10. tf.initializers.Initializer class .orthogonal() function: It produces a random orthogonal matrix.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.orthogonal() function let geek = tf.initializers.orthogonal(2) // Printing gain value console.log(geek); // Printing individual gain value console.log( '\nIndividual values:\n' ); console.log(geek.DEFAULT_GAIN); console.log(geek.gain); |
Output:
{ "DEFAULT_GAIN": 1, "gain": 1 } Individual values: 1 1
11. tf.initializers.Initializer class .randomNormal() function: It is used to produce random values that are initialized to a normal distribution.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.randomNormal() function let geek = tf.initializers.randomNormal(3) // Printing gain value console.log(geek); // Printing individual gain value. console.log( '\nIndividual values:\n' ); console.log(geek.DEFAULT_MEAN); console.log(geek.DEFAULT_STDDEV); console.log(geek.mean); console.log(geek.stddev); |
Output:
{ "DEFAULT_MEAN": 0, "DEFAULT_STDDEV": 0.05, "mean": 0, "stddev": 0.05 } Individual values: 0 0.05 0 0.05
12. tf.initializers.Initializer class .randomUniform() function: It is used to generate random values that are initialized to a uniform distribution. The values are distributed uniformly between the configured min-value and max-value.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.randomUniform() function let geek = tf.initializers.randomUniform(5) // Printing gain value console.log(geek); // Printing individual gain value. console.log( '\nIndividual values:\n' ); console.log(geek.DEFAULT_MINVAL); console.log(geek.DEFAULT_MAXVAL); console.log(geek.minval); console.log(geek.maxval); |
Output:
{ "DEFAULT_MINVAL": -0.05, "DEFAULT_MAXVAL": 0.05, "minval": -0.05, "maxval": 0.05 } Individual values: -0.05 0.05 -0.05 0.05
13. tf.initializers.Initializer class .truncatedNormal(): It function produces random values initialized to a truncated normal distribution.
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.truncatedNormal() // function let geek = tf.initializers.truncatedNormal(13) // Printing gain value console.log(geek); // Printing individual gain value console.log( '\nIndividual values:\n' ); console.log(geek.DEFAULT_MEAN); console.log(geek.DEFAULT_STDDEV); console.log(geek.mean); console.log(geek.stddev); |
Output:
{ "DEFAULT_MEAN": 0, "DEFAULT_STDDEV": 0.05, "mean": 0, "stddev": 0.05 } Individual values: 0 0.05 0 0.05
14. tf.initializers.Initializer class .varianceScaling() function: It is capable of adjusting its scale to the shape of weights. Using the value of distribution = NORMAL, samples are drawn from a truncated normal distribution that has center at 0, with stddev = sqrt(scale / n).
Example:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.varianceScaling() // function let geek = tf.initializers.varianceScaling(33) // Printing gain value console.log(geek); // Printing individual gain value. console.log( '\nIndividual values:\n' ); console.log(geek.scale); console.log(geek.mode); console.log(geek.distribution); |
Output:
{ "scale": 1, "mode": "fanIn", "distribution": "normal" } Individual values: 1 fanIn normal
15. tf.initializers.Initializer class .zeros() function: It is an initializer that is used to produce tensors that are initialized to zero.
Example:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Calling tf.initializers.zeros() function const initializer = tf.initializers.zeros(); // Printing output console.log(JSON.stringify(+initializer)); |
Output:
null
Reference: https://js.tensorflow.org/api/latest/#class:initializers.Initializer