Monday, October 6, 2025
HomeLanguagesSympy stats.GeneralizedMultivariateLogGammaOmega() in python

Sympy stats.GeneralizedMultivariateLogGammaOmega() in python

With the help of sympy.stats.GeneralizedMultivariateLogGammaOmega() method, we can get the continuous joint random variable which represents the extended Generalized Multivariate Log Gamma distribution.

Syntax : GeneralizedMultivariateLogGammaOmega(syms, omega, v, lamda, mu)
Parameters :
1) Syms – list of symbols
2) Omega – a square matrix
3) V – positive real number
4) Lambda – a list of positive reals
5) mu – a list of positive real numbers.
Return : Return the continuous joint random variable.

Example #1 :
In this example we can see that by using sympy.stats.GeneralizedMultivariateLogGammaOmega() method, we are able to get the continuous joint random variable representing extended Generalized Multivariate Log Gamma distribution by using this method.




# Import sympy and GeneralizedMultivariateLogGammaOmega
from sympy.stats import density
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega
from sympy.stats.joint_rv import marginal_distribution
from sympy import symbols, S, Matrix
  
v = 1
l, mu = [1, 1, 1], [1, 1, 1]
d = S.One
y = symbols('y_1:4', positive = True)
omega = Matrix([[1, S.Half, S.Half], [S.Half, 1, S.Half], [S.Half, S.Half, 1]])
  
# Using sympy.stats.GeneralizedMultivariateLogGammaOmega() method
Gd = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu)
gfg = density(Gd)(y[0], y[1], y[2])
  
pprint(gfg)


Output :

         oo                                                               
      ______                                                              
      \     `                                                             
       \                 n                                                
        \     /      ___\                                y_1    y_2    y_3
         \    |    \/ 2 |   (n + 1)*(y_1 + y_2 + y_3) - e    - e    - e   
  ___     \   |1 - -----| *e                                              
\/ 2 *    /   \      2  /                                                 
         /    ------------------------------------------------------------
        /                                 3                               
       /                             Gamma (n + 1)                        
      /_____,                                                             
       n = 0                                                              
--------------------------------------------------------------------------
                                    2                                     

Example #2 :




# Import sympy and GeneralizedMultivariateLogGammaOmega
from sympy.stats import density
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega
from sympy.stats.joint_rv import marginal_distribution
from sympy import symbols, S, Matrix
  
v = 1
l, mu = [1, 2], [2, 1]
d = S.One
y = symbols('y_1:3', positive = True)
omega = Matrix([[1, S.Half], [S.Half, 1]])
  
# Using sympy.stats.GeneralizedMultivariateLogGammaOmega() method
Gd = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu)
gfg = density(Gd)(y[0], y[1])
  
pprint(gfg)


Output :

     oo                                                       
  ______                                                      
  \     `                                                     
   \                                                       y_2
    \                                             2*y_1   e   
     \                   (n + 1)*(2*y_1 + y_2) - e      - ----
      \      -n - 1  -n                                    2  
3*    /   2*2      *4  *e                                     
     /    ----------------------------------------------------
    /                             2                           
   /                         Gamma (n + 1)                    
  /_____,                                                     
   n = 0                                                      
--------------------------------------------------------------
                              4                               
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32338 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6707 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11936 POSTS0 COMMENTS
Shaida Kate Naidoo
6825 POSTS0 COMMENTS
Ted Musemwa
7089 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6779 POSTS0 COMMENTS