With the help of sympy.stats.Frechet()
method, we can get the continuous random variable representing the frechet distribution.
Syntax :
sympy.stats.Frechet(name, a, s=1, m=0)
Where, a, s and m denotes the real number.
Return : Return continuous random variable.
Example #1 :
In this example we can see that by using sympy.stats.Frechet()
method, we are able to get the continuous random variable which represents the Frechet distribution by using this method.
# Import sympy and Frechet from sympy.stats import Frechet, density from sympy import Symbol a = Symbol( "a" , integer = True , positive = True ) s = Symbol( "s" , integer = True , positive = True ) m = Symbol( "m" , integer = True , positive = True ) z = Symbol( "z" ) # Using sympy.stats.Frechet() method X = Frechet( "x" , a, s, m) gfg = density(X)(z) pprint(gfg) |
Output :
-a
/-m + z\
-a – 1 -|——|
/-m + z\ \ s /
a*|——| *e
\ s /
—————————–
s
Example #2 :
# Import sympy and Frechet from sympy.stats import Frechet, density from sympy import Symbol a = 3 s = 1 m = - 2 z = Symbol( "z" ) # Using sympy.stats.Frechet() method X = Frechet( "x" , a, s, m) gfg = density(X)(z) pprint(gfg) |
Output :
-1
——–
3
(z + 2)
3*e
———–
4
(z + 2)