Permutation.unrank_nonlex() : unrank_nonlex() is a sympy Python library function which is a linear time unranking algorithm that does not respect lexicographic order.
Syntax : sympy.combinatorics.permutations.Permutation.unrank_nonlex()
Return : linear time unranking.
Code #1 : unrank_nonlex() Example
# Python code explaining # SymPy.Permutation.unrank_nonlex() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.unrank_nonlex() method # creating Permutation a = Permutation([[ 2 , 0 ], [ 3 , 1 ]]) b = Permutation([ 1 , 3 , 5 , 4 , 2 , 0 ]) print ( "Permutation a - unrank_nonlex form : " , a.unrank_nonlex( 2 , 5 )) print ( "Permutation b - unrank_nonlex form : " , b.unrank_nonlex( 1 , 6 )) |
Output :
Permutation a – unrank_nonlex form : (1)
Permutation b – unrank_nonlex form : (0)
Code #2 : unrank_nonlex() Example
# Python code explaining # SymPy.Permutation.unrank_nonlex() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.unrank_nonlex() method # creating Permutation a = Permutation([[ 2 , 4 , 0 ], [ 3 , 1 , 2 ], [ 1 , 5 , 6 ]]) print ( "Permutation a - unrank_nonlex form : " , a.unrank_nonlex( 2 , 8 )) |
Output :
Permutation a – unrank_nonlex form : (0 1)