Permutation.rank_trotterjohnson() : rank_trotterjohnson() is a sympy Python library function that returns the trotter johnson rank of non lexicographical permutation.
Syntax : sympy.combinatorics.permutations.Permutation.rank_trotterjohnson()
Return : next permutation in lexicographical rank_trotterjohnson
Code #1 : rank_trotterjohnson() Example
# Python code explaining # SymPy.Permutation.rank_trotterjohnson() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.rank_trotterjohnson() method # creating Permutation a = Permutation([[ 2 , 0 ], [ 3 , 1 ]]) b = Permutation([ 1 , 3 , 5 , 4 , 2 , 0 ]) print ( "Permutation a - rank_trotterjohnson form : " , a.rank_trotterjohnson()) print ( "Permutation b - rank_trotterjohnson form : " , b.rank_trotterjohnson()) |
Output :
Permutation a – rank_trotterjohnson form : 10
Permutation b – rank_trotterjohnson form : 555
Code #2 : rank_trotterjohnson() Example – 2D Permutation
# Python code explaining # SymPy.Permutation.rank_trotterjohnson() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.rank_trotterjohnson() method # creating Permutation a = Permutation([[ 2 , 4 , 0 ], [ 3 , 1 , 2 ], [ 1 , 5 , 6 ]]) print ( "Permutation a - rank_trotterjohnson form : " , a.rank_trotterjohnson()) |
Output :
Permutation a – rank_trotterjohnson form : 2420