With the help of inverse_sine_transform() method, we can compute the inverse sine transformation and return the unevaluated function.
Syntax : inverse_sine_transform(F, k, x, **hints)
Return : Return the unevaluated function.
Example #1 :
In this example we can see that by using inverse_sine_transform() method, we are able to compute the inverse sine transformation and return the evaluated function.
Python3
# import inverse_sine_transform from sympy import inverse_sine_transform, exp, sqrt, gamma, pi from sympy.abc import x, k, a # Using inverse_sine_transform() method gfg = inverse_sine_transform( 2 * * (( 1 - 2 * a) / 2 ) * k * * (a - 1 ) * gamma( - a / 2 + 1 ) / gamma((a + 1 ) / 2 ), k, x) print (gfg) |
Output :
x**(-a)
Example #2 :
Python3
# import inverse_sine_transform from sympy import inverse_sine_transform, exp, sqrt, gamma, pi from sympy.abc import x, k, a # Using inverse_sine_transform() method gfg = inverse_sine_transform( 2 * * (( 1 - 2 * a) / 2 ) * k * * (a - 1 ) * gamma( - a / 2 + 1 ) / gamma((a + 1 ) / 2 ), k, 3 ) print (gfg) |
Output :
(1/3)**a