Given an array, find the XOR of sum of all pairs in an array.
Examples:
Input : arr[] = {1, 2, 3}
Output : 0
(1 + 1) ^ (1 + 2) ^ (1 + 3) ^ (2 + 1) ^ (2 + 2) ^
(2 + 3) ^ (3 + 1) ^ (3 + 2) ^ (3 + 3) = 0
Input : arr[] = {1, 2, 3, 4}
Output : 8
Implementation: A naive approach is to consider all the pairs one by one, calculate their XOR one after the other.
C++
#include <bits/stdc++.h>
using namespace std;
int xorPairSum( int ar[], int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
for ( int j = 0; j < n; j++)
sum = sum ^ (ar[i] + ar[j]);
return sum;
}
int main()
{
int arr[] = { 1, 2, 3 };
int n = sizeof (arr)/ sizeof (arr[0]);
cout << xorPairSum(arr, n);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int xorPairSum( int ar[], int n)
{
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
for ( int j = 0 ; j < n; j++)
sum = sum ^ (ar[i] + ar[j]);
return sum;
}
public static void main (String[] args)
{
int arr[] = { 1 , 2 , 3 };
int n = arr.length;
System.out.print( xorPairSum(arr, n));
}
}
|
Python3
def xor_pair_sum(ar, n):
total = 0
for i in range (n):
for j in range (n):
total = total ^ (ar[i] + ar[j])
return total
if __name__ = = "__main__" :
data = [ 1 , 2 , 3 ]
print (xor_pair_sum(data, len (data)))
|
C#
using System;
class GFG
{
static int xorPairSum( int []ar,
int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
for ( int j = 0; j < n; j++)
sum = sum ^ (ar[i] + ar[j]);
return sum;
}
static public void Main(String []args)
{
int []arr = { 1, 2, 3 };
int n = arr.Length;
Console.WriteLine(xorPairSum(arr, n));
}
}
|
PHP
<?php
function xorPairSum( $ar , $n )
{
$sum = 0;
for ( $i = 0; $i < $n ; $i ++)
$sum = $sum ^ ( $ar [ $i ] +
$ar [ $j ]);
return $sum ;
}
$arr = array ( 1, 2, 3 );
$n = count ( $arr );
echo xorPairSum( $arr , $n );
?>
|
Javascript
<script>
function xorPairSum(ar, n)
{
let sum = 0;
for (let i = 0; i < n; i++)
for (let j = 0; j < n; j++)
sum = sum ^ (ar[i] + ar[j]);
return sum;
}
let arr = [ 1, 2, 3 ];
let n = arr.length;
document.write(xorPairSum(arr, n));
</script>
|
Time Complexity : O(N2)
Auxiliary Space: O(1)
Implementation: An efficient solution is based on XOR properties. We simply calculate the XOR of every element and then just multiply it by two.
C++
#include <bits/stdc++.h>
using namespace std;
int xorPairSum( int ar[], int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum = sum ^ ar[i];
return 2*sum;
}
int main()
{
int arr[] = { 1, 2, 3 };
int n = sizeof (arr)/ sizeof (arr[0]);
cout << xorPairSum(arr, n);
return 0;
}
|
Java
class GFG
{
static int xorPairSum( int ar[],
int n)
{
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
sum = sum ^ ar[i];
return 2 * sum;
}
public static void main(String args[])
{
int arr[] = { 1 , 2 , 3 };
int n = arr.length;
System.out.println( xorPairSum(arr, n));
}
}
|
Python3
def xor_pair_sum(ar, n):
total = 0
for i in range (n):
total = total ^ ar[i]
return 2 * total
if __name__ = = "__main__" :
data = [ 1 , 2 , 3 ]
print (xor_pair_sum(data, len (data)))
|
C#
using System;
class GFG
{
static int xorPairSum( int []ar,
int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum = sum ^ ar[i];
return 2 * sum;
}
static public void Main(String []args)
{
int []arr = { 1, 2, 3 };
int n = arr.Length;
Console.WriteLine( xorPairSum(arr, n));
}
}
|
PHP
<?php
function xor_pair_sum( $ar , $n )
{
$total = 0;
for ( $i = 0; $i < $n ; $i ++)
$total = $total ^ $ar [ $i ];
return (2 * $total );
}
$data = array (1, 2, 3);
$n = sizeof( $data );
echo xor_pair_sum( $data , $n );
?>
|
Javascript
<script>
function xorPairSum(ar, n)
{
var sum = 0;
for (i = 0; i < n; i++)
sum = sum ^ ar[i];
return 2 * sum;
}
var arr = [ 1, 2, 3 ];
var n = arr.length;
document.write( xorPairSum(arr, n));
</script>
|
Time Complexity : O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!