Thursday, September 4, 2025
HomeGuest BlogsSum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) +...

Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + …… + (1+2+3+4+…+n)

Given the value of n, we need to find the sum of the series where i-th term is sum of first i natural numbers.
Examples : 
 

Input  : n = 5   
Output : 35
Explanation :
(1) + (1+2) + (1+2+3) + (1+2+3+4) + (1+2+3+4+5) = 35

Input  : n = 10
Output : 220
Explanation :
(1) + (1+2) + (1+2+3) +  .... +(1+2+3+4+.....+10) = 220

 

Recommended Practice

Naive Approach : 
Below is implementation of above series : 
 

C++




// CPP program to find sum of given series
#include <bits/stdc++.h>
using namespace std;
 
// Function to find sum of given series
int sumOfSeries(int n)
{
    int sum = 0;
    for (int i = 1 ; i <= n ; i++)
        for (int j = 1 ; j <= i ; j++)
            sum += j;
    return sum;
}
 
// Driver Function
int main()
{
    int n = 10;
    cout << sumOfSeries(n);
    return 0;
}


Java




// JAVA Code For Sum of the series
import java.util.*;
 
class GFG {
     
    // Function to find sum of given series
    static int sumOfSeries(int n)
    {
        int sum = 0;
        for (int i = 1 ; i <= n ; i++)
            for (int j = 1 ; j <= i ; j++)
                sum += j;
        return sum;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
         int n = 10;
         System.out.println(sumOfSeries(n));
         
    }
}
 
// This code is contributed by Arnav Kr. Mandal.


Python




# Python3 program to find sum of given series
 
# Function to find sum of series
def sumOfSeries(n):
    return sum([i*(i+1)/2 for i in range(1, n + 1)])
 
# Driver Code
if __name__ == "__main__":
    n = 10
    print(sumOfSeries(n))


C#




// C# Code For Sum of the series
using System;
 
class GFG {
 
    // Function to find sum of given series
    static int sumOfSeries(int n)
    {
        int sum = 0;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= i; j++)
                sum += j;
        return sum;
    }
 
    /* Driver program to test above function */
    public static void Main()
    {
        int n = 10;
         
        Console.Write(sumOfSeries(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find
// sum of given series
 
// Function to find
// sum of given series
function sumOfSeries($n)
{
    $sum = 0;
    for ($i = 1 ; $i <= $n ; $i++)
        for ($j = 1 ; $j <= $i ; $j++)
            $sum += $j;
    return $sum;
}
 
// Driver Code
$n = 10;
echo(sumOfSeries($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript Program for Sum of the series
 
 // Function to find sum of given series
    function sumOfSeries(n)
    {
        let sum = 0;
        for (let i = 1 ; i <= n ; i++)
            for (let j = 1 ; j <= i ; j++)
                sum += j;
        return sum;
    }
 
// Driver code   
          
        let n = 10;
        document.write(sumOfSeries(n));
             
</script>


Output : 

220

Efficient Approach :
Let n^{th}      term of the series 1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4)…(1 + 2 + 3 +..n) be denoted as an 
 

an = Σn1 i = \frac{n (n + 1)}{2} = \frac{(n^2 + n)}{2}
Sum of n-terms of series 
Σn1 an = Σn1 \frac{(n^2 + n)}{2}
= \frac{1}{2} Σ [ n^2 ] + Σ [ n  ]
= \frac{1}{2} * \frac{n(n + 1)(2n + 1)}{6} + \frac{1}{2} * \frac{n(n+1)}{2}
= \frac{n(n+1)(2n+4)}{12}

Below is implementation of above approach : 
 

C++




// CPP program to find sum of given series
#include <bits/stdc++.h>
using namespace std;
 
// Function to find sum of given series
int sumOfSeries(int n)
{
    return (n * (n + 1) * (2 * n + 4)) / 12;
}
 
// Driver Function
int main()
{
    int n = 10;
    cout << sumOfSeries(n);
}


Java




// JAVA Code For Sum of the series
import java.util.*;
 
class GFG {
     
    // Function to find sum of given series
    static int sumOfSeries(int n)
    {
        return (n * (n + 1) *
                (2 * n + 4)) / 12;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
         int n = 10;
         System.out.println(sumOfSeries(n));
         
    }
}
 
// This code is contributed by Arnav Kr. Mandal.


Python




# Python program to find sum of given series
 
# Function to find sum of given series
def sumOfSeries(n):
    return (n * (n + 1) * (2 * n + 4)) / 12;
     
# Driver function
if __name__ == '__main__':
    n = 10
    print(sumOfSeries(n))


C#




// C# Code For Sum of the series
using System;
 
class GFG {
 
    // Function to find sum of given series
    static int sumOfSeries(int n)
    {
        return (n * (n + 1) * (2 * n + 4)) / 12;
    }
 
    /* Driver program to test above function */
    public static void Main()
    {
        int n = 10;
         
        Console.Write(sumOfSeries(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find
// sum of given series
 
// Function to find
// sum of given series
function sumOfSeries($n)
{
    return ($n * ($n + 1) *
           (2 * $n + 4)) / 12;
}
 
// Driver Code
$n = 10;
echo(sumOfSeries($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript program For Sum of the series
 
// Function to find sum of given series
    function sumOfSeries(n)
    {
        return (n * (n + 1) *
                (2 * n + 4)) / 12;
    }
      
 
// Driver code
         
        let n = 10;
        document.write(sumOfSeries(n));
                   
</script>


Output : 

220

Time Complexity: O(1)
Auxiliary Space: O(1)
 

Last Updated :
09 Sep, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Dominic
32261 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6695 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS