Friday, January 10, 2025
Google search engine
HomeData Modelling & AISum of the first N Pronic Numbers

Sum of the first N Pronic Numbers

Given a number N, the task is to find the sum of the first N Pronic Numbers.

The numbers that can be arranged to form a rectangle are called Rectangular Numbers (also known as Pronic numbers). 

The first few rectangular numbers are: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 . . . .

Examples:

Input: N = 4 
Output: 20 
Explanation: 0, 2, 6, 12 are the first 4 pronic numbers. 

Input: N = 3 
Output: 8

Approach:

Let, the Nth term be denoted by TN. This problem can easily be solved by splitting each term as follows:
S_N = 0 + 2 + 6 + 12 + 20 + 30......\\ S_N = (0 * 1) + (1 * 2) + (2 * 3) + (3 * 4) + (4 * 5) + ......\\ S_N = (0 * (0 + 1) + (1 * (1 + 1)) + (2 * (2 + 1)) + (3 * (3 + 1)) + (4 * (4 + 1)) + ......\\ S_N = (0^2 + 0) + (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + (4^2 + 4) +......\\ S_N = (0 + 1 + 2 + 3 + 4 + ...T_N) + (0^2 + 1^2 + 2^2 + 3^2 + 4^2 + ... T_N)

Therefore:

S_N = Sum of N Pronic Numbers\\ S_N = [N*\frac{(N - 1)}{2}] + [N*\frac{(N - 1)*(2*N - 1)}{6}]

C++




// C++ implementation to find
// sum of first N terms
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
int calculateSum(int N)
{
 
    return N * (N - 1) / 2
        + N * (N - 1)
                * (2 * N - 1) / 6;
}
 
// Driver code
int main()
{
    int N = 3;
 
    cout << calculateSum(N);
 
    return 0;
}


Java




// Java implementation implementation to find
// sum of first N terms
class GFG{
     
// Function to calculate the sum
static int calculateSum(int N)
{
     
    return N * (N - 1) / 2 + N * (N - 1) *
        (2 * N - 1) / 6;
}
     
// Driver code
public static void main (String[] args)
{
    int N = 3;
     
    System.out.println(calculateSum(N));
}
}
 
// This code is contributed by Pratima Pandey


Python3




# Python3 implementation to find
# sum of first N terms
 
# Function to calculate the sum
def calculateSum(N):
 
    return (N * (N - 1) // 2 +
            N * (N - 1) * (2 *
                N - 1) // 6);
 
# Driver code
N = 3;
print(calculateSum(N));
 
# This code is contributed by Code_Mech


C#




// C# implementation implementation to find
// sum of first N terms
using System;
class GFG{
     
// Function to calculate the sum
static int calculateSum(int N)
{
     
    return N * (N - 1) / 2 + N * (N - 1) *
                        (2 * N - 1) / 6;
}
     
// Driver code
public static void Main()
{
    int N = 3;
     
    Console.Write(calculateSum(N));
}
}
 
// This code is contributed by Code_Mech


Javascript




// JS implementation to find
// sum of first N terms
 
 
// Function to calculate the sum
function calculateSum(N)
{
 
    return  Math.floor(N * (N - 1) / 2) + Math.floor(N * (N - 1) * (2 * N - 1) / 6);
}
 
// Driver code
let N = 3;
console.log(calculateSum(N));
 
 
// This code is contributed by phasing17


Output

8

Time complexity: O(1).
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments